Version 1.3.47

November 13, 2018

Contents

9

2 HOTINT User Manual 47
48

48

[2.1.2 Main structure of the multibody kernel| 48
[2.1.3 Object ibrary| o 20
[2.1.4 The dynamic solver — implicit time integration|. 50
[2.1.5 The static solver — incremental loadingl 52
[2.1.6 Kigenmode computation| 52
[2.1.7 Parameter Variation, Sensitivity Analysis, Identification and Optimization| 57
[2.1.8 The Element Concept| 63
2.1.9 Nodes for Direct Connection of Finite Elements 64
[2.1.10 The Concept of Loads| 64
[2.1.11 Sensors for Measuring] 65
[2.1.12 Geometric Elements for Bodies with Complex Geometry| 65

[2.2 Getting started| e 66
[2.2.1 Instructions for installing HOTINT on a MS5-Windows computer| 66
[2.2.2 First steps| 69
[2.2.3 Command Line Usage| 70
[2.2.4 Configure Notepad++ for HOTINT|. 71

2.3 HOTINT Windows User Intertacel 73
[2.3.1 Using the graphics window|. 73
232 Mousecontroll 73
(2.3.3 HOTINT main application window| 73
[2.3.4 Specific buttons| 74
2.3.5 HOTINT Main Menul o oo o . 75

2.4 Creating your model in HOTIN'T| 80
2.4.1 Introductionl. 80
[2.4.2 Model setup via the script language| 80
[2.4.3 Model setup via the graphical user interface, 84

2.5 Options Dialogs| 86
2.5. [ntroduction| L 86
[2.5.2 Hotint Options| 86
[2.5.3 Viewing Options| 89
[2.5.4 OpenGL Drawing Options|, 90
[2.5.5 Finite Element Drawing Options| 92
[2.5.6 Body / Joint Options|. 94
[2.5.7 Data Manager|. 96

4 CONTENTS

[2.5.8 Solver Options| 97
[2.6 Data visualization and graphics export| 99
2.7 Visualization Tooll. 99
.71 Howtorecordavwvideol 101
2.8 HOTINT File and Folder Structurelo 103
2.8.1 Input Files|. 103

3 HOTINT Reference Manuall

[3.1.1 Examples| 105
[3.1.2 Data objects|. 105
B3.1.3 Observable FieldVariables| 105
[3.1.4 Observable special values|. 00000 105
[3.1.5 Controllable special values| 105
B2 FElementl ¢ oo 106
B.2.1 MassIDI o 106
.22 RotorlDl 109
.23 Mass2Dl 112
[3.2.4 Rigid2D] 115
.20 Mass3DI 118
(3.2.6 NodalDiskMass3Dl oo 120
[3.2.7 Rigid3D| 122
[3.2.8 Rigid3DKardan| 126
[3.2.9 Rigid3DMinCoord| 129
B.2.10 LinearBeam3Dl 133
[3.2.11 RotorBeamXAxislo 137
(3.2.12 ANCEFBeambhear3Dlanear].o oo 141
[3.2.13 ANCFBeamShearsDQuadratic|. 147
(3.2.14 ANCEFBeam3D'lorsionl L. 153
[3.2.15 Hexahedrall 157
[3.2.16 Tetrahedrallo 161
B2IT Prsml . . .« o o o 164
[3.2.18 Pyramid| 168
3.3 Connectorl L 173
3.3.1 PointJoint] 174
B.3.2 CoordinateConstraintl. oo Lo 179
[3.3.3 VelocityCoordinateConstraint| 182
3.3.4 MultiCoordConstraintl 185
[3.3.0 ShdingPointJomnt| oo 188
[3.3.6 ShdingPrismaticJomnt| 0o 192
[3.3.7 Rope3D| 195
[3.3.8 FrictionConstraintl 198
.39 ContactIDl. 202
[3.3.10 PlaneConstraintl. 205
[3.3.11 GenericBodyJomnt|. o 210
[3.3.12 RevoluteJointl 216
(3.3.13 Prsmaticlomntl.o oo 219

CONTENTS 5
[3.3.15 RigidJoint| 226
[3.3.16 CylindricalJomnt| o 229
[3.3.17 SpringDamperActuator|. 232
[3.3.18 RigidLank|o 238
[3.3.19 RotatorySpringDamperActuator|. 243
[3.3.20 SpringDamperActuator2D|o o000 249
3.3.21 PoimntJomnt2Dlo 252

3.4 Control elementsl L 255
[3.4.1 10DiscretelransterFunctionl o000 256
[3.4.2 10DigitalFilter] oo o 258
.43 lORandombourcel oo 261
(3.4.4 lOLinearlransformation| L. 263
[3.4.5 TOQuantizer| L 265
3.4.6 1OContinuousTransferfunction| 267
B.47 10LmearODEl 0 0o 00 oo 270
3.4.8 TOMathFunctionl oo 272
.49 TOSaturatel 275
(3.4.10 10DeadZonel.o 277
3.4.11 IOProductl. o 280
B.412 TOTmmel o 0 282
3.4.13 10PulseGeneratoro Lo 283
3.4.14 10T imeWindow!|o 285
[3.4.15 TOStopComputation| 287
(3.4.16 1ORlementDataModifier] 000 289
[3.4.17 IODisplay| 292
[3.4.18 TOGraph3D| 294
3.4.19 TOMmMaxl 295
BA20TOTCPIPBIOCK o o o o oo e e 297
BA2T TOR2CN . © . oo oo e e e e 305
(3.4.22 1Olneariransducerlo oo 308

B Materall 313
3.5.1 Materiall 313
[3.5.2 Material Thermalkbxpansion|00 314
[3.5.3 MatenalElastoplastic| o oo 315
[3.5.4 MaterialElastoplasticThermalExpansion| 316

[3.6 BeamProperties| 318
[3.6.1 Beam3DProperties| o 318

3.0 Nodel e 320
B.7.1 Node3DI| 320
B.7.2 Node3DSTIrotdl. 321
B.7.3 NodedDS253 322
[3.7.4 Node3DRxyz| 323
BZ5 Node3DRIZZ et 324
B.7.6 Node3dDSIS2 324

B8 Toadl . . .« o oo 326
B.81 GCLoadl 326
[3.8.2 BodylLoad| 328
3.8.3 ForceVector2DI. 328
.84 ForceVectordDl.o 330

CONTENTS

.85 MomentVector3D| 331
[3.8.6 Gravityl 332
[3.8.7 SurfacePressurel Lo 333
[3.8.8 Bodyloadbdpatiallo 000 333
BO_Sensorl 335
3.9.1 FVElementSensor| 335
3.9.2 FElementSensorl 336
3.9.3 LoadSensorl 337
[3.9.4 MultipleSensor| 339
[3.9.5 SystemSensor|o 339
3.9.6 FVGlobalPositionSensorlo 341
[3.10 SensorProcessors| 343
B.11 GeomElement| 344
B.11.1 GeomMesh3Dl 344
[3.11.2 GeomCylinder3D| o 345
[3.11.3 GeomSphere3D| 345
B.11.4 GeomCube3D| 346
B.11.5 GeomOrthoCube3Dl. 346
BIZTSet] . . oo o 348
BI2T FlementSell e 348
3.12.2 GlobalNodeSetl 348
3.12.3 LocalNodeSetAl 349
3.12.4 LocalNodeSetBl 349
3.12.5 GlobalCoordSetl 349
3.12.6 LocalCoordSetAl 349
3.12.7 LocalCoordSetBl. 350
B.12.8 FaceSetAl e 350
B.I12.9 SensorSet] 350
BI3Meshl o o 352
B.I3.1 StructuralMeshl 353
B.13.2 SolidMeshlo 354
[3.14 MeshComponents| o 355
3.14.1 Primitive: Blockl o 356
[3.14.2 Primitive: Cylinder| 357
[3.14.3 Primitive: Quadrilaterall oo o0 358
[3.14.4 Primitive: Curvel e e e e 359
B.14.5 Extended: Mirrorf 359
[3.14.6 Extended: Extrudelo 0oL 360
[3.14.7 Extended: Rotationall. o000 360
[3.14.8 Extended: Lin2Quad| 361
[3.14.9 Extended: SplitHexes|. 362
[3.14.10 Extended: Refinel oo 362
B.I14.11Process: Transforml oo oo 363
BI4I12Process: Distortl. 363
[3.14.13 Process: Modity|. 364
[3.14.14 Process: WriterNeutral3D| 0. 364
(3.14.15 Loader: NetGen2Dl oo 365
[3.14.16 Loader: NetGendD| 366

CONTENTS 7

B.I1418 Loader: STII o o o 367
[3.14.19 Loader: DataArrays|, 367
[3.14.20Refinement]o 369
B.14.21 MeshBElementso oo 371
B.15 Commandl 375
3.15.1 AddBElement| o 377
3.15.2 AddGeomElement! oo 378
[3.15.3 AssignGeomElementloElement| 378
[3.15.4 AddConnector|. 380
3.15.5 AddlLoad|. 381
[3.15.6 AddSensoro 381
3.15.7 AddSensorProcessor]o oL 382
3.15.8 AddMateriall oo 383
[3.15.9 AddBeamProperties| oo 383
B.15.10AddNodelo 384
B.Ib 11 Includel.o 384
BIST2Print o o o o 385
BI5 13 Prntltl 386
BIST4ReadSTLFIlE o oot e 386
[3.15.15 RotMat2Angles| 387
(3.15.16 LoadVectorbromlalelo oo oo 387
BI5.I7TransformPointso 388
[3.15.18 Computelnertialo oo 389
BISTIOSWMl - - . o o o 390
3.15.20 Product] 391
[3.15.21 Transposel L 392
[3.15.22 CrossProduct] oo 392
BIS23for 392
BIS24GM o 394
[3.15.25 GenerateNewMeshl oo oo 395
[3.15.26 GenerateBeam| oL 396
[3.15.27 GeneratePlatel o o o 397
[3.15.28 GenerateBlocklo oo oo 399
[3.15.29 GenerateCylinder| o 400
[3.15.30LoadMeshlo 402
B.15.31T WriteMeshl oL 403
B.15.32 Transtorml| Lo 403
[B.15.33Distortl 405
[3.15.34 Modity|. 406
[3.15.35 Linear2Quadratic) 407
[3.15.36 5plhitHexes| 408
BISSTREMNE . . . o o oo 409
B.I15.38 Rotatel 411
BIS39Mirrorl 412
B.15.40 Extrudel 413
B.15.41TAddMeshToMBSo oo 414
(3.15.42 GetNodesInBox|o oo oo 415
[3.15.43 GetNodesInCylinder| 416

[3.15.44 GetNodesInSphere,o oL 418

8 CONTENTS

(3.15.45 GetNodesInlunction|o oo oo oo 419
3.15.46 GetNodePoslo 420
[3.15.47 GetFaceskromNodes|o 421
[3.15.48 GlueMeshlo 421
[3.15.49 GetlocalPosOfGlobalPosl oo 423
[3.15.00 GetllementsInBoxlo oo 423
[3.15.51 GetllementAtPosition| oo oo 424
B.15.52GenerateNewPlot] oo Lo 425
[3.15.53 ExportToFilel 425
BISSACIOSE . - . o o oo 426
[3.15.55 DoeskEntrykuxist| Lo oo 426
[3.15.56 GetByName| 427
[3.15.575etByName| 428
[3.15.58 Compare| 428
B.15.595trCatl 429
...................................... 430
[3.15.61 IntArrayOp| 431
BISG2TIMEL .« . . o oo v vt 432
B.15.63AddbSet]. . . . oL 433
[3.15.64 AccessSetl 433
[3.15.65 GenerateConstraintsl oL 434
[3.15.66 GenerateSensorsl. Lo 437
[3.15.67 AssignMateriall 438
[3.15.68 AssignLoad| 439
[3.15.69 ChangeProperties| 440
[3.15.70SetInitialConditionlo 442
[3.15.71 OpenCompiledModel| 442
.. 443
[3.16.1 SolverOptions| 443
[3.16.2 LoggingOptions| e 450
[3.16.3 GeneralOptions| L 451
[3.16.4 ViewingOptions| e 452
[3.16.5 PlotToolOptions| 458

(Bibliography| 460

Chapter 1

(General Information

Introduction

Development history and background information

The code HOTINT has been initiated by Johannes Gerstmayr in 1997 and, until now, gone
over the following steps:

e solution methods and basic linear algebra routines for static solver (diploma thesis of the
main developer, 1997)

e addition of time integration methods for the accurate solution of large-scale flexible and
discontinuous multibody systems (up to 2004)

e integration with graphical interface in 2003 (with Yury Vetyukov)

e implementation of various structural finite elements, such as flexible beam and plate elements
based on the absolute nodal coordinate formulation

e implementation of the floating frame of reference concept, as well as the component mode
synthesis

e HOTINT made available to and further developed by Linz Center of Mechatronics (since
2007)

e HOTINT made available to and further developed by Austrian Center of Competence in
Mechatronics (from 2008 to 2013)

e User version of HOTINT V1.1 available as freeware (2013)

e A open source version of HOTINT is available (end of 2013)

Current State of HOTINT

HOTINT mainly consists of the multibody kernel, the solver and linear algebra kernel, and the
graphics and user interface, and currently comprises several hundred thousand lines of code. It
has been particularly developed for the use of arbitrary classes of fully implicit Runge Kutta
(IRK) methods. The IRK-tableaus can be defined in an external text-file and are given for
several methods for 1 to 10 stages. The code makes advantage of the very high order reached
through the use of fully implicit methods, which makes it especially then fast, when higher

9

10 CHAPTER 1. GENERAL INFORMATION

accuracy is needed.

In the current version, the K-form of IRK-equations has been implemented for the fast inte-
gration of 2"¢ order (mechanical) systems. Instead of trying to invert the mass matrix, which
leads to large terms in the case of symbolic inversion, or instead of trying to add the system
as a constraint equation (this has been done by some people who implemented their system
into existing codes), you can now provide the mass matrix and the right hand side separately
and the solver only solves one large system, but does not need the accelerations to be written
explicitly as function of the remaining unknowns.

Summarizing, advanced methods from flexible multibody dynamics cover

e the efficient geometrical description for moving rigid bodies and bodies with superimposed
small deformation,

e the application of special finite element methods, which are well suited for simulating large
deformations of structural elements,

e high-order implicit time-integration schemes, in order to enforce stability for the numerical
solution,

e a sophisticated treatment of algebraic equations for the arbitrary coupling of bodies, and for
the incorporation of certain (boundary) conditions,

e and finally the reduction of the system size by a component mode synthesis (CMS).

General Information

Chief developer

Johannes Gerstmayr

Further developers

Larissa Aigner, Markus Dibold, Alexander Dorninger, Rafael Eder, Peter Gruber, Alexander
Humer, Karin Nachbagauer, Astrid Pechstein, Daniel Reischl, Martin Saxinger, Markus Schor-
genhumer, Michael Stangl, Yury Vetyukov, Simon Weitzhofer

Contact

support@hotint.org

Linz Center of Mechatronics GmbH
Altenbergerstr. 69, 4040 Linz, AUSTRIA
http://www.lem.at

Thanks

The help and support from the contributors of the Institute of Technical Mechanics and Insti-
tute of Numerical Mathematics at the Johannes Kepler University of Linz is greatly appreciated.

11

I would like to acknowledge the important grant of the FWF ("Fond zur Férderung Wissen-
schaftlicher Forschung" - the Austrian National Science Fund) within the project P15195-N03
and the APART project of the Austrian Academy of Sciences.

Parts of this software have been developed in the project "Nachhaltig ressourcenschonende
elektrische Antriebe durch hichste Energie- und Material-Effizienz" (sustainable and resource
saving electrical drives through high energy and material efficiency) which is part of the Eu-
ropean Union program "Regionale Wettbewerbsfihigkeit OO 2007-2013 (Regio 13)" sponsored
by the European Regional Development Fund (ERDF) and the Province of Upper Austria.

Parts of this software have been developed with the support of the Comet K2 Austrian Center
of Competence in Mechatronics (ACCM).

Link

http://www.hotint.org

12 CHAPTER 1. GENERAL INFORMATION

Copyright and license

HotInt General License (Version 1.0)

Copyright (c¢) 1997 — 2018 Johannes Gerstmayr, Linz Center of Mechatronics GmbH,
Austrian Center of Competence in Mechatronics GmbH, Institute of Technical
Mechanics at the Johannes Kepler Universitaet Linz, Austria. All rights
reserved .

Redistribution and use in source and binary forms, with or without modification ,
are permitted provided that the following conditions are
met :

— Redistributions of source code must retain the above copyright
notice , this list of conditions and the following disclaimer.

— Redistributions in binary form must reproduce the above copyright
notice , this list of conditions and the following disclaimer listed
in this license in the documentation and/or other materials
provided with the distribution.

— Neither the name of the copyright holders nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

The copyright holders provide no reassurances that the source code
provided does not infringe any patent, copyright, or any other
intellectual property rights of third parties. The copyright holders
disclaim any liability to any recipient for claims brought against
recipient by any third party for infringement of that parties
intellectual property rights.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This program contains SuperLU 5.0, ExtGL, BLAS 3.5.0, LAPACK 3.5.0, Spectra and
Eigen covered under the following licenses:

SuperLU 5.0

Copyright (c) 2003, The Regents of the University of California, through
Lawrence Berkeley National Laboratory (subject to receipt of any required
approvals from U.S. Dept. of Energy)

13

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification , are permitted provided that the following conditions are met:

(1) Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

(2) Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

(3) Neither the name of Lawrence Berkeley National Laboratory, U.S. Dept. of
Energy mnor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS"™ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

ExtGl

Copyright (c) 2002, Lev Povalahev. All rights reserved.

Redistribution and use in source and binary forms, with or without modification ,
are permitted provided that the following conditions are met:

x Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

x The name of the author may not be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,

OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE

USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

BLAS 3.5.0

The reference BLAS is a freely —available software package. It is available from
netlib via anonymous ftp and the World Wide Web. Thus, it can be included in
commercial software packages (and has been). We only ask that proper credit

14 CHAPTER 1. GENERAL INFORMATION

be given to the authors.

Like all software, it is copyrighted. It is not trademarked, but we do ask the
following :

If you modify the source for these routines we ask that you change the name of
the routine and comment the changes made to the original

We will gladly answer any questions regarding the software. If a modification is
done, however, it is the responsibility of the person who modified the
routine to provide support.

LAPACK 3.5.0

Copyright (c¢) 1992—2013 The University of Tennessee and The University
of Tennessee Research Foundation. All rights
reserved .

Copyright (c) 2000—2013 The University of California Berkeley. All
rights reserved.

Copyright (c¢) 2006—2013 The University of Colorado Denver. All rights
reserved .

$COPYRIGHTS
Additional copyrights may follow
$HEADERS$

Redistribution and use in source and binary forms, with or without
modification , are permitted provided that the following conditions are
met :

— Redistributions of source code must retain the above copyright
notice , this list of conditions and the following disclaimer.

— Redistributions in binary form must reproduce the above copyright
notice , this list of conditions and the following disclaimer listed
in this license in the documentation and/or other materials
provided with the distribution.

— Neither the name of the copyright holders nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

The copyright holders provide no reassurances that the source code
provided does not infringe any patent, copyright, or any other
intellectual property rights of third parties. The copyright holders
disclaim any liability to any recipient for claims brought against
recipient by any third party for infringement of that parties
intellectual property rights.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The following libraries are not linked to HOTINT directly but are requirements
of the software libraries BLAS and LAPACK.

LIBGFORTRAN

Copyright (C) 2002—2013 Free Software Foundation, Inc.
Contributed by Paul Brook <paul@nowt.org>, and
Andy Vaught <andy@xena.eas.asu.edu>

Libgfortran is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

Libgfortran is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.

You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>.

LIBGCC
Copyright (C) 2005—2014 Free Software Foundation, Inc.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version .

GCC is distributed in the hope that it will be useful , but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.

You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses />

16 CHAPTER 1. GENERAL INFORMATION
LibQuadmath

GCC Quad—Precision Math Library

Copyright (C) 2010, 2011 Free Software Foundation, Inc.

Written by Francois—Xavier Coudert <fxcoudert@gcc.gnu.org>

This file is part of the libquadmath library.

Libquadmath is free software; you can redistribute it and/or

modify it under the terms of the GNU Library General Public

License as published by the Free Software Foundation; either

version 2 of the License, or (at your option) any later version.

Libquadmath is distributed in the hope that it will be useful ,

but WITHOUT ANY WARRANITY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

Library General Public License for more details.

You should have received a copy of the GNU Library General Public

License along with libquadmath; see the file COPYING.LIB. If

not , write to the Free Software Foundation, Inc., 51 Franklin Street — Fifth
Floor ,

Boston, MA 02110-1301, USA.

Libwinpthread
Copyright (c) 2011 mingw—w64 project

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction , including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense ,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

/ *
x Parts of this library are derived by:
*
x Posix Threads library for Microsoft Windows
*
* Use at own risk, there is no implied warranty to this code.
* It uses undocumented features of Microsoft Windows that can change
x at any time in the future.
*
* (C) 2010 Lockless Inc.
x All rights reserved.
*
* Redistribution and use in source and binary forms, with or without

modification ,
x are permitted provided that the following conditions are met:

17

x Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

x Neither the name of Lockless Inc. nor the names of its contributors may be
used to endorse or promote products derived from this software without
specific prior written permission.

¥R X K X KX X X X X X X

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AN

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

«+ WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED.

« IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT,

« INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING

*

* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

x DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF

« LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE

x OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED

* OF THE POSSIBILITY OF SUCH DAMAGE.

GNU LIBRARY GENERAL PUBLIC LICENSE Version 2

GNU LIBRARY GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1991 Free Software Foundation, Inc.

51 Franklin Street, Fifth Floor, Boston, MA 02110—-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

[This is the first released version of the library GPL. It is
numbered 2 because it goes with version 2 of the ordinary GPL.]

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
Licenses are intended to guarantee your freedom to share and change
free software—to make sure the software is free for all its users.

This license , the Library General Public License, applies to some
specially designated Free Software Foundation software, and to any
other libraries whose authors decide to use it. You can use it for
your libraries , too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you

18 CHAPTER 1. GENERAL INFORMATION

have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it , that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if
you distribute copies of the library , or if you modify it.

For example, if you distribute copies of the library , whether gratis
or for a fee, you must give the recipients all the rights that we gave
you. You must make sure that they, too, receive or can get the source
code. If you link a program with the library , you must provide
complete object files to the recipients so that they can relink them
with the library , after making changes to the library and recompiling
it. And you must show them these terms so they know their rights.

Our method of protecting your rights has two steps: (1) copyright
the library , and (2) offer you this license which gives you legal
permission to copy, distribute and/or modify the library.

Also, for each distributor ’s protection, we want to make certain
that everyone understands that there is no warranty for this free
library. If the library is modified by someone else and passed on, we
want its recipients to know that what they have is not the original
version , so that any problems introduced by others will not reflect on
the original authors’ reputations.

Finally ; any free program is threatened constantly by software
patents. We wish to avoid the danger that companies distributing free
software will individually obtain patent licenses , thus in effect
transforming the program into proprietary software. To prevent this,
we have made it clear that any patent must be licensed for everyone’s
free use or not licensed at all.

Most GNU software, including some libraries , is covered by the ordinary
GNU General Public License, which was designed for utility programs. This
license , the GNU Library General Public License, applies to certain
designated libraries. This license is quite different from the ordinary
one; be sure to read it in full, and don’t assume that anything in it is
the same as in the ordinary license.

The reason we have a separate public license for some libraries is that
they blur the distinction we usually make between modifying or adding to a

program and simply using it. Linking a program with a library , without
changing the library , is in some sense simply using the library , and is
analogous to running a utility program or application program. However, in

a textual and legal sense, the linked executable is a combined work, a
derivative of the original library , and the ordinary General Public License
treats it as such.

Because of this blurred distinction , using the ordinary General
Public License for libraries did not effectively promote software
sharing , because most developers did not use the libraries. We
concluded that weaker conditions might promote sharing better.

However, unrestricted linking of non—free programs would deprive the

19

users of those programs of all benefit from the free status of the
libraries themselves. This Library General Public License is intended to
permit developers of non—free programs to use free libraries , while
preserving your freedom as a user of such programs to change the free
libraries that are incorporated in them. (We have not seen how to achieve
this as regards changes in header files , but we have achieved it as regards
changes in the actual functions of the Library.) The hope is that this
will lead to faster development of free libraries.

The precise terms and conditions for copying, distribution and
modification follow. Pay close attention to the difference between a
"work based on the library" and a "work that uses the library". The
former contains code derived from the library , while the latter only
works together with the library.

Note that it is possible for a library to be covered by the ordinary
General Public License rather than by this special one.

GNU LIBRARY GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library which
contains a notice placed by the copyright holder or other authorized
party saying it may be distributed under the terms of this Library
General Public License (also called "this License"). Each licensee is
addressed as "you".

A "library" means a collection of software functions and/or data
prepared so as to be conveniently linked with application programs
(which use some of those functions and data) to form executables.

The "Library", below, refers to any such software library or work
which has been distributed under these terms. A "work based on the
Library" means either the Library or any derivative work under
copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is
included without limitation in the term "modification".)

"Source code" for a work means the preferred form of the work for
making modifications to it. For a library , complete source code means
all the source code for all modules it contains, plus any associated
interface definition files , plus the scripts used to control compilation
and installation of the library.

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running a program using the Library is not restricted , and output from
such a program 1is covered only if its contents constitute a work based
on the Library (independent of the use of the Library in a tool for
writing it). Whether that is true depends on what the Library does
and what the program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library’s
complete source code as you receive it , in any medium, provided that
you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any

20 CHAPTER 1. GENERAL INFORMATION

warranty; and distribute a copy of this License along with the
Library.

You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange for a
fee.

2. You may modify your copy or copies of the Library or any portion
of it , thus forming a work based on the Library, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices
stating that you changed the files and the date of any change.

c¢) You must cause the whole of the work to be licensed at no
charge to all third parties under the terms of this License.

d) If a facility in the modified Library refers to a function or a
table of data to be supplied by an application program that uses
the facility , other than as an argument passed when the facility
is invoked, then you must make a good faith effort to ensure that,
in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of
its purpose remains meaningful.

(For example, a function in a library to compute square roots has
a purpose that is entirely well—defined independent of the
application. Therefore, Subsection 2d requires that any
application—supplied function or table used by this function must
be optional: if the application does not supply it, the square
root function must still compute square roots.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Library,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Library, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote
it .

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Library.

In addition , mere aggregation of another work not based on the Library
with the Library (or with a work based on the Library) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public
License instead of this License to a given copy of the Library. To do

this , you must alter all the notices that refer to this License, so
that they refer to the ordinary GNU General Public License, version 2,
instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify
that version instead if you wish.) Do not make any other change in
these notices.

Once this change is made in a given copy, it is irreversible for
that copy, so the ordinary GNU General Public License applies to all
subsequent copies and derivative works made from that copy.

This option is useful when you wish to copy part of the code of
the Library into a program that is not a library.

4. You may copy and distribute the Library (or a portion or
derivative of it , under Section 2) in object code or executable form
under the terms of Sections 1 and 2 above provided that you accompany
it with the complete corresponding machine—readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange.

If distribution of object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the
source code from the same place satisfies the requirement to
distribute the source code, even though third parties are not
compelled to copy the source along with the object code.

5. A program that contains no derivative of any portion of the
Library , but is designed to work with the Library by being compiled or
linked with it , is called a "work that uses the Library". Such a
work, in isolation , is not a derivative work of the Library, and
therefore falls outside the scope of this License.

However, linking a "work that uses the Library" with the Library
creates an executable that is a derivative of the Library (because it
contains portions of the Library), rather than a "work that uses the
library". The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.

When a "work that uses the Library" uses material from a header file
that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not.
Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The
threshold for this to be true is not precisely defined by law.

If such an object file uses only numerical parameters, data
structure layouts and accessors, and small macros and small inline
functions (ten lines or less in length), then the use of the object
file is unrestricted , regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the
Library will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may
distribute the object code for the work under the terms of Section 6.
Any executables containing that work also fall under Section 6,
whether or not they are linked directly with the Library itself.

21

22 CHAPTER 1. GENERAL INFORMATION

6. As an exception to the Sections above, you may also compile or
link a "work that uses the Library" with the Library to produce a
work containing portions of the Library, and distribute that work
under terms of your choice, provided that the terms permit
modification of the work for the customer’s own use and reverse
engineering for debugging such modifications.

You must give prominent notice with each copy of the work that the
Library is wused in it and that the Library and its use are covered by
this License. You must supply a copy of this License. If the work
during execution displays copyright notices, you must include the
copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one
of these things:

a) Accompany the work with the complete corresponding
machine—readable source code for the Library including whatever
changes were used in the work (which must be distributed under
Sections 1 and 2 above); and, if the work is an executable linked
with the Library, with the complete machine—readable "work that
uses the Library", as object code and/or source code, so that the
user can modify the Library and then relink to produce a modified
executable containing the modified Library. (It is understood
that the user who changes the contents of definitions files in the
Library will not necessarily be able to recompile the application
to use the modified definitions.)

b) Accompany the work with a written offer, valid for at
least three years, to give the same user the materials
specified in Subsection 6a, above, for a charge no more
than the cost of performing this distribution.

c) If distribution of the work is made by offering access to copy
from a designated place, offer equivalent access to copy the above
specified materials from the same place.

d) Verify that the user has already received a copy of these
materials or that you have already sent this user a copy.

For an executable, the required form of the "work that uses the
Library" must include any data and utility programs needed for
reproducing the executable from it. However, as a special exception,
the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies
the executable.

It may happen that this requirement contradicts the license
restrictions of other proprietary libraries that do not normally
accompany the operating system. Such a contradiction means you cannot
use both them and the Library together in an executable that you
distribute.

7. You may place library facilities that are a work based on the
Library side—by—side in a single library together with other library
facilities not covered by this License, and distribute such a combined

library , provided that the separate distribution of the work based on
the Library and of the other library facilities is otherwise
permitted , and provided that you do these two things:

a) Accompany the combined library with a copy of the same work
based on the Library, uncombined with any other library
facilities. This must be distributed under the terms of the
Sections above.

b) Give prominent notice with the combined library of the fact
that part of it is a work based on the Library, and explaining
where to find the accompanying uncombined form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute
the Library except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense, link with, or
distribute the Library is void, and will automatically terminate your
rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

9. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Library or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Library (or any work based on the
Library), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the
Library), the recipient automatically receives a license from the
original licensor to copy, distribute, link with or modify the Library
subject to these terms and conditions. You may not impose any further
restrictions on the recipients’ exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

11. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Library at all. For example, if a patent
license would not permit royalty—free redistribution of the Library by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply,
and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the

23

24 CHAPTER 1. GENERAL INFORMATION

integrity of the free software distribution system which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

12. If the distribution and/or use of the Library is restricted in
certain countries either by patents or by copyrighted interfaces , the
original copyright holder who places the Library under this License may add
an explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if
written in the body of this License.

13. The Free Software Foundation may publish revised and/or new
versions of the Library General Public License from time to time.
Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library
specifies a version number of this License which applies to it and
"any later version", you have the option of following the terms and
conditions either of that version or of any later version published by
the Free Software Foundation. If the Library does not specify a
license version number, you may choose any version ever published by
the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free
programs whose distribution conditions are incompatible with these,

write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our

decision will be guided by the two goals of preserving the free status
of all derivatives of our free software and of promoting the sharing
and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE IAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE

25

LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE) , EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Libraries

If you develop a new library , and you want it to be of the greatest
possible use to the public, we recommend making it free software that
everyone can redistribute and change. You can do so by permitting
redistribution under these terms (or, alternatively , under the terms of the
ordinary General Public License).

To apply these terms, attach the following notices to the library. It is
safest to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least the
"copyright" line and a pointer to where the full notice is found.

<one line to give the library ’s name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.

You should have received a copy of the GNU Library General Public
License along with this library; if not, write to the Free Software

Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301
USA

Also add information on how to contact you by electronic and paper mail.
You should also get your employer (if you work as a programmer) or your
school , if any, to sign a "copyright disclaimer" for the library , if

necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the
library ‘Frob’ (a library for tweaking knobs) written by James Random Hacker.

<signature of Ty Coon>, 1 April 1990
Ty Coon, President of Vice

That’s all there is to 1it!
GNU GENERAL PUBLIC LICENSE Version 3

GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

26 CHAPTER 1. GENERAL INFORMATION

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for
software and other kinds of works.

The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program—to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it , that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.

Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.

))

protection , the GPL clearly explains
’ and

For the developers’ and authors
that there is no warranty for this free software. For both users
authors’ sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.

Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer

can do so. This is fundamentally incompatible with the aim of
protecting users’ freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use , which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we

stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.

Finally , every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of

27

software on general—purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non—free.

The precise terms and conditions for copying, distribution and
modification follow.

TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.

"Copyright" also means copyright—like laws that apply to other kinds of
works, such as semiconductor masks.

"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.

To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.

A "covered work" means either the unmodified Program or a work based
on the Program.

To "propagate" a work means to do anything with it that, without
permission , would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.

To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.

1. Source Code.

The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non—source
form of a work.

A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.

28 CHAPTER 1. GENERAL INFORMATION

The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel ; window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.

The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install , and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work’s
System Libraries, or general—purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.

The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source .

The Corresponding Source for a work in source code form is that
same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content , constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not
convey , without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10

makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti—Circumvention Law.

No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures .

When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing , against the work’s
users , your or third parties’ legal rights to forbid circumvention of
technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you
receive it , in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non—permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:

a) The work must carry prominent notices stating that you modified
it , and giving a relevant date.

b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".

¢) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it .

d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.

A compilation of a covered work with other separate and independent
works , which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not

30 CHAPTER 1. GENERAL INFORMATION

used to limit the access or legal rights of the compilation’s users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.

6. Conveying Non—Source Forms.

You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine—readable Corresponding Source under the terms of this License,
in one of these ways:

a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.

b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer , valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model ; to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the

Corresponding Source from a network server at no charge.

c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially , and
only if you received the object code with such an offer, in accord
with subsection 6b.

d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities , provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.

e) Convey the object code using peer—to—peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.

A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.

A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,

or household purposes, or (2) anything designed or sold for incorporation

into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a

typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non—consumer uses, unless such uses represent
the only significant mode of use of the product.

"Installation Information" for a User Product means any methods,
procedures , authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.

If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).

The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient , or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking , reading or copying.

7. Additional Terms.

"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place

31

32 CHAPTER 1. GENERAL INFORMATION

additional permissions on material , added by you to a covered work,
for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:

a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or

b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or

c¢) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or

d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or

e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or

f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient , for
any liability that these contractual assumptions directly impose on
those licensors and authors.

All other non—permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it , or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction , you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License , you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you
must place, in the relevant source files , a statement of the
additional terms that apply to those files , or a notice indicating
where to find the applicable terms.

Additional terms, permissive or non—permissive, may be stated in the
form of a separately written license , or stated as exceptions;
the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).

However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)

33

provisionally ; unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated , you do not qualify to receive new licenses for the same
material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or

run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer—to—peer transmission
to receive a copy likewise does not require acceptance. However,

nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a

covered work, you indicate your acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.

An "entity transaction" is a transaction transferring control of an
organization , or substantially all assets of one, or subdividing an
organization , or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party’s predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest , if
the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross—claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling , offering for
sale, or importing the Program or any portion of it.

11. Patents.
A "contributor" is a copyright holder who authorizes use under this

License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor’s "contributor version".

34 CHAPTER 1. GENERAL INFORMATION

)

A contributor’s "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.

Each contributor grants you a non—exclusive , worldwide, royalty—free
patent license under the contributor’s essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.

In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.

If you convey a covered work, knowingly relying on a patent license
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient’s use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are wvalid.

If | pursuant to or in connection with a single transaction or
arrangement , you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it .

A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non—exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.

If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy’s
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.

Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.

15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY

APPLICABLE TAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY

36 CHAPTER 1. GENERAL INFORMATION

OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS) ,
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction , make it output a short

notice like this when it starts in an interactive mode:

<program> Copyright (C) <year> <name of author>

This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c¢’ for details.

The hypothetical commands ‘show w’ and ‘show c¢’ should show the appropriate
parts of the General Public License. Of course, your program’s commands
might be different; for a GUI interface, you would use an "about box".

You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses />.

The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first , please read
<http://www.gnu.org/philosophy /why—not—lgpl.html>.

GCC Runtime Library Exception Version 3.1

GCC RUNTIME LIBRARY EXCEPTION

Version 3.1, 31 March 2009

Copyright (C) 2009 Free Software Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

This GCC Runtime Library Exception ("Exception") is an additional
permission under section 7 of the GNU General Public License, version
3 ("GPLv3"). It applies to a given file (the "Runtime Library") that
bears a notice placed by the copyright holder of the file stating that
the file is governed by GPLv3 along with this Exception.

When you use GCC to compile a program, GCC may combine portions of
certain GCC header files and runtime libraries with the compiled
program . The purpose of this Exception is to allow compilation of
non—GPL (including proprietary) programs to use, in this way, the
header files and runtime libraries covered by this Exception.

0. Definitions.

A file is an "Independent Module" if it either requires the Runtime
Library for execution after a Compilation Process, or makes use of an
interface provided by the Runtime Library, but is not otherwise based
on the Runtime Library.

"GCC" means a version of the GNU Compiler Collection, with or without
modifications , governed by version 3 (or a specified later version) of
the GNU General Public License (GPL) with the option of using any
subsequent versions published by the FSF.

38 CHAPTER 1. GENERAL INFORMATION

"GPL-compatible Software" is software whose conditions of propagation ,
modification and use would permit combination with GCC in accord with
the license of GCC.

"Target Code" refers to output from any compiler for a real or virtual
target processor architecture, in executable form or suitable for
input to an assembler, loader, linker and/or execution

phase. Notwithstanding that, Target Code does not include data in any
format that is used as a compiler intermediate representation, or used
for producing a compiler intermediate representation.

The "Compilation Process" transforms code entirely represented in
non—intermediate languages designed for human—written code, and/or in
Java Virtual Machine byte code, into Target Code. Thus, for example,
use of source code generators and preprocessors need not be considered
part of the Compilation Process, since the Compilation Process can be
understood as starting with the output of the generators or
preprocessors.

A Compilation Process is "Eligible" if it is done using GCC, alone or
with other GPL-compatible software, or if it is done without using any
work based on GCC. For example, using non—GPL-compatible Software to

optimize any GCC intermediate representations would not qualify as an
Eligible Compilation Process.

1. Grant of Additional Permission.

You have permission to propagate a work of Target Code formed by
combining the Runtime Library with Independent Modules, even if such
propagation would otherwise violate the terms of GPLv3, provided that
all Target Code was generated by Eligible Compilation Processes. You
may then convey such a combination under terms of your choice,
consistent with the licensing of the Independent Modules.

2. No Weakening of GCC Copyleft.
The availability of this Exception does not imply any general

presumption that third—party software is unaffected by the copyleft
requirements of the license of GCC.

Spectra and Eigen

Both Spectra (http://yixuan.cos.name/spectra) and Eigen (http://eigen.tuxfamily
.org) are covered by the Mozilla Public License Version 2.0 (https://www.
mozilla.org/en—US/MPL/2.0/)

Mozilla Public License Version 2.0

1. Definitions

1.1. "Contributor"
means each individual or legal entity that creates, contributes to
the creation of, or owns Covered Software.

1.2. "Contributor Version"
means the combination of the Contributions of others (if any) used
by a Contributor and that particular Contributor’s Contribution.

1.3. "Contribution"
means Covered Software of a particular Contributor.

1.4. "Covered Software"
means Source Code Form to which the initial Contributor has attached
the notice in Exhibit A, the Executable Form of such Source Code
Form, and Modifications of such Source Code Form, in each case
including portions thereof.

1.5. "Incompatible With Secondary Licenses"
means

(a) that the initial Contributor has attached the notice described
in Exhibit B to the Covered Software; or

(b) that the Covered Software was made available under the terms of
version 1.1 or earlier of the License, but not also under the
terms of a Secondary License.

1.6. "Executable Form"
means any form of the work other than Source Code Form.

1.7. "Larger Work"
means a work that combines Covered Software with other material , in
a separate file or files , that is not Covered Software.

1.8. "License"
means this document.

1.9. "Licensable"
means having the right to grant, to the maximum extent possible
whether at the time of the initial grant or subsequently, any and
all of the rights conveyed by this License.

1.10. "Modifications"
means any of the following:

(a) any file in Source Code Form that results from an addition to,
deletion from, or modification of the contents of Covered
Software; or

(b) any new file in Source Code Form that contains any Covered
Software .

1.11. "Patent Claims" of a Contributor
means any patent claim(s), including without limitation , method,
process , and apparatus claims, in any patent Licensable by such
Contributor that would be infringed , but for the grant of the
License, by the making, using, selling , offering for sale, having
made, import, or transfer of either its Contributions or its
Contributor Version.

1.12. "Secondary License"
means either the GNU General Public License, Version 2.0, the GNU
Lesser General Public License, Version 2.1, the GNU Affero General

40 CHAPTER 1. GENERAL INFORMATION

Public License, Version 3.0, or any later versions of those
licenses.

1.13. "Source Code Form"
means the form of the work preferred for making modifications.

1.14. "You" (or "Your")
means an individual or a legal entity exercising rights under this

License. For legal entities, "You" includes any entity that
controls , is controlled by, or is under common control with You. For
purposes of this definition, "control" means (a) the power, direct

or indirect , to cause the direction or management of such entity,
whether by contract or otherwise, or (b) ownership of more than
fifty percent (50%) of the outstanding shares or beneficial
ownership of such entity.

2. License Grants and Conditions

2.1. Grants

Each Contributor hereby grants You a world—wide, royalty—free,
non—exclusive license:

(a) under intellectual property rights (other than patent or trademark)
Licensable by such Contributor to use, reproduce, make available ,
modify , display , perform, distribute , and otherwise exploit its
Contributions , either on an unmodified basis, with Modifications , or
as part of a Larger Work; and

(b) under Patent Claims of such Contributor to make, use, sell , offer
for sale, have made, import, and otherwise transfer either its
Contributions or its Contributor Version.

2.2. Effective Date

The licenses granted in Section 2.1 with respect to any Contribution
become effective for each Contribution on the date the Contributor first
distributes such Contribution.

2.3. Limitations on Grant Scope

The licenses granted in this Section 2 are the only rights granted under
this License. No additional rights or licenses will be implied from the
distribution or licensing of Covered Software under this License.
Notwithstanding Section 2.1(b) above, no patent license is granted by a
Contributor:

(a) for any code that a Contributor has removed from Covered Software;
or

(b) for infringements caused by: (i) Your and any other third party’s
modifications of Covered Software, or (ii) the combination of its
Contributions with other software (except as part of its Contributor
Version); or

(c¢) under Patent Claims infringed by Covered Software in the absence of
its Contributions.

This License does not grant any rights in the trademarks, service marks,
or logos of any Contributor (except as may be necessary to comply with
the notice requirements in Section 3.4).

2.4. Subsequent Licenses

No Contributor makes additional grants as a result of Your choice to
distribute the Covered Software under a subsequent version of this
License (see Section 10.2) or under the terms of a Secondary License (if
permitted under the terms of Section 3.3).

2.5. Representation

Each Contributor represents that the Contributor believes its
Contributions are its original creation(s) or it has sufficient rights
to grant the rights to its Contributions conveyed by this License.

2.6. Fair Use

This License is not intended to limit any rights You have under
applicable copyright doctrines of fair use, fair dealing, or other
equivalents.

2.7. Conditions

Sections 3.1, 3.2, 3.3, and 3.4 are conditions of the licenses granted
in Section 2.1.

3. Responsibilities

3.1. Distribution of Source Form

All distribution of Covered Software in Source Code Form, including any
Modifications that You create or to which You contribute , must be under
the terms of this License. You must inform recipients that the Source
Code Form of the Covered Software is governed by the terms of this
License , and how they can obtain a copy of this License. You may not
attempt to alter or restrict the recipients’ rights in the Source Code
Form.

3.2. Distribution of Executable Form
If You distribute Covered Software in Executable Form then:

(a) such Covered Software must also be made available in Source Code
Form, as described in Section 3.1, and You must inform recipients of
the Executable Form how they can obtain a copy of such Source Code
Form by reasonable means in a timely manner, at a charge no more
than the cost of distribution to the recipient; and

(b) You may distribute such Executable Form under the terms of this
License, or sublicense it under different terms, provided that the
license for the Executable Form does not attempt to limit or alter
the recipients’ rights in the Source Code Form under this License.

3.3. Distribution of a Larger Work

You may create and distribute a Larger Work under terms of Your choice,

42 CHAPTER 1. GENERAL INFORMATION

provided that You also comply with the requirements of this License for
the Covered Software. If the Larger Work is a combination of Covered
Software with a work governed by one or more Secondary Licenses, and the
Covered Software is not Incompatible With Secondary Licenses, this
License permits You to additionally distribute such Covered Software
under the terms of such Secondary License(s), so that the recipient of
the Larger Work may, at their option, further distribute the Covered
Software under the terms of either this License or such Secondary
License(s).

3.4. Notices

You may not remove or alter the substance of any license notices
(including copyright notices, patent notices, disclaimers of warranty,
or limitations of liability) contained within the Source Code Form of
the Covered Software, except that You may alter any license notices to
the extent required to remedy known factual inaccuracies.

3.5. Application of Additional Terms

You may choose to offer , and to charge a fee for, warranty, support,
indemnity or liability obligations to one or more recipients of Covered
Software. However, You may do so only on Your own behalf, and not on
behalf of any Contributor. You must make it absolutely clear that any
such warranty, support, indemnity, or liability obligation is offered by
You alone, and You hereby agree to indemnify every Contributor for any
liability incurred by such Contributor as a result of warranty, support,
indemnity or liability terms You offer. You may include additional
disclaimers of warranty and limitations of liability specific to any
jurisdiction .

4. Inability to Comply Due to Statute or Regulation

If it is impossible for You to comply with any of the terms of this
License with respect to some or all of the Covered Software due to
statute , judicial order, or regulation then You must: (a) comply with
the terms of this License to the maximum extent possible; and (b)
describe the limitations and the code they affect. Such description must
be placed in a text file included with all distributions of the Covered
Software under this License. Except to the extent prohibited by statute
or regulation , such description must be sufficiently detailed for a
recipient of ordinary skill to be able to understand it .

5. Termination

5.1. The rights granted under this License will terminate automatically
if You fail to comply with any of its terms. However, if You become
compliant , then the rights granted under this License from a particular
Contributor are reinstated (a) provisionally , unless and until such
Contributor explicitly and finally terminates Your grants, and (b) on an
ongoing basis, if such Contributor fails to notify You of the
non—compliance by some reasonable means prior to 60 days after You haveS
come back into compliance. Moreover, Your grants from a particular
Contributor are reinstated on an ongoing basis if such Contributor
notifies You of the non—compliance by some reasonable means, this is the
first time You have received notice of non—compliance with this License
from such Contributor, and You become compliant prior to 30 days after

Your receipt of the notice.

5.2. If You initiate litigation against any entity by asserting a patent
infringement claim (excluding declaratory judgment actions,
counter—claims , and cross—claims) alleging that a Contributor Version
directly or indirectly infringes any patent, then the rights granted to
You by any and all Contributors for the Covered Software under Section
2.1 of this License shall terminate.

5.3. In the event of termination under Sections 5.1 or 5.2 above, all
end user license agreements (excluding distributors and resellers) which
have been validly granted by You or Your distributors under this License
prior to termination shall survive termination.

KK 3K 3k ok 3k 3k ok ok ok 3k 3k 3k sk sk sk ok sk sk sk ok ok ok ok ok ok sk sk sk ok sk ok ok sk ok ok ok sk sk sk ok ok 3k 3k sk skoskosk ok sk sk sk ok ok ok ok sk ok sk sk ok ok ok ok ok ok ok ok ok ok ko

6. Disclaimer of Warranty

* *
* *
* *
* *
x Covered Software is provided under this License on an "as is" *
x basis, without warranty of any kind, either expressed, implied, or =
* statutory , including, without limitation , warranties that the *
* Covered Software is free of defects, merchantable, fit for a *
x particular purpose or non—infringing. The entire risk as to the *
* quality and performance of the Covered Software is with You. *
x Should any Covered Software prove defective in any respect, You *
* (not any Contributor) assume the cost of any necessary servicing, *
* repair, or correction. This disclaimer of warranty constitutes an *
x essential part of this License. No use of any Covered Software is *
* authorized under this License except under this disclaimer. *
* *
* *

Kok ok ok ok ok ok ok ok ok ok sk ok sk sk ok ok 3k ok ok ok ok ok ok ok sk sk sk ok sk ok ok sk ok ok ok ok sk sk sk sk sk sk sk sk skook ok ok ok ok ok ok ok ok sk sk ok sk sk ok ok ok ok ok ok ok ok ok ok
>k 3k 3k >k 3kook ok 3k ok ok ok 3k ok ok sk ok ok Sk sk ok skok ok skosk ok sk ok sk ok skok sk sk sk ok Sk sk ok skok sk skosk ok sk ok sk ok sk sk sk skok ok skok ok skok ok sk sk ok ok ok ok ok skok ok ok

7. Limitation of Liability

* *
* *
* *
* *
* Under no circumstances and under no legal theory, whether tort *
* (including negligence), contract, or otherwise, shall any *
x Contributor, or anyone who distributes Covered Software as *
x permitted above, be liable to You for any direct, indirect , *
x special , incidental , or consequential damages of any character *
* including , without limitation , damages for lost profits, loss of *
x goodwill , work stoppage, computer failure or malfunction, or any *
x and all other commercial damages or losses , even if such party *
x shall have been informed of the possibility of such damages. This *
x limitation of liability shall not apply to liability for death or *
* personal injury resulting from such party’s negligence to the *
x extent applicable law prohibits such limitation. Some *
x jurisdictions do not allow the exclusion or limitation of *
* incidental or consequential damages, so this exclusion and *
x limitation may not apply to You. *
* *
* *

koK ok ok ok ok ok ok ok ok sk sk ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok sk sk sk sk sk sk sk sk sk sk sk ok sk sk ok

8. Litigation

43

44 CHAPTER 1. GENERAL INFORMATION

Any litigation relating to this License may be brought only in the
courts of a jurisdiction where the defendant maintains its principal
place of business and such litigation shall be governed by laws of that
jurisdiction , without reference to its conflict —of—law provisions.
Nothing in this Section shall prevent a party’s ability to bring
cross—claims or counter—claims.

9. Miscellaneous

This License represents the complete agreement concerning the subject
matter hereof. If any provision of this License is held to be
unenforceable, such provision shall be reformed only to the extent
necessary to make it enforceable. Any law or regulation which provides
that the language of a contract shall be construed against the drafter
shall not be used to construe this License against a Contributor.

10. Versions of the License

10.1. New Versions

Mozilla Foundation is the license steward. Except as provided in Section
10.3, no one other than the license steward has the right to modify or
publish new versions of this License. Each version will be given a
distinguishing version number.

10.2. Effect of New Versions

You may distribute the Covered Software under the terms of the version
of the License under which You originally received the Covered Software,
or under the terms of any subsequent version published by the license
steward .

10.3. Modified Versions

If you create software not governed by this License, and you want to
create a new license for such software, you may create and use a
modified version of this License if you rename the license and remove
any references to the name of the license steward (except to note that
such modified license differs from this License).

10.4. Distributing Source Code Form that is Incompatible With Secondary
Licenses

If You choose to distribute Source Code Form that is Incompatible With
Secondary Licenses under the terms of this version of the License, the

notice described in Exhibit B of this License must be attached.

Exhibit A — Source Code Form License Notice

This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file , You can obtain one at http://mozilla.org/MPL/2.0/.

If it is not possible or desirable to put the notice in a particular
file , then You may include the notice in a location (such as a LICENSE
file in a relevant directory) where a recipient would be likely to look

for such a notice.
You may add additional accurate notices of copyright ownership.

Exhibit B — "Incompatible With Secondary Licenses" Notice

This Source Code Form is "Incompatible With Secondary Licenses"
defined by the Mozilla Public License, v. 2.0.

as

45

46

CHAPTER 1.

GENERAL INFORMATION

Chapter 2

HOTINT User Manual

47

48 CHAPTER 2. HOTINT USER MANUAL

2.1 Multibody formulation

The present code is based on a redundant coordinate formulation for the modeling of the mo-
tion and deformation of bodies. This means that e.g. every rigid body has its own six degrees
of freedom (DOF), no matter how this body is constrained by other bodies or even if it is fixed
to the ground. The main reason for this formulation is the simple extensibility of the code
regarding the development of new elements, constraints, forces, etc. . The numerical efficiency
is gained by adapted solvers for the sparse structure of the system equations, which leads to a
similar effort as in recursive and minimal coordinate approaches.

Several main points have been focused in the multibody kernel:

e The application of implicit time integration algorithms shall be efficient
e The code shall be capable of structural and solid finite elements

e The code shall be extendable and open for new elements (e.g. non-mechanical, variable
mass, variable topology, etc.)

Some things you should know:

Dimensions: dimensions are chosen by user, but should use standard international units: kg/-
m/s.

Numbering: All lists, arrays or other ordering numbers start with 1 if not specified differently.

Elements: Bodies and connectors are elements. If you search for bodies or connectors (e.g.
for editing) in the HOTINT program, you should look for elements.

2.1.1 Solution vector

The multibody system and solver always have two solution vectors. One containing either the
initial vector or the actual solution (this is the solution vector) and another one that is used
for the graphics drawing which is called drawing solution vector. The latter vector is utilized
to independently draw the solution of a certain computed time instant during the computation
(e.g. if the computation lasts very long or is of indefinite length).

The solution vector is split into a “position level” (not necessarily a real position) and “velocity
level” part for the case of the second order differential variables. Assume that there are n second
order differential equation variables, then the solution vector will contain first n position level
coordinates and after that n velocity level coordinates. The local coordinates of a body (e.g.
accessible via the sensor) are ordered in a similar way. The local second order differential
variables of a body contain first m position level coordinates and after that another m velocity
level coordinates.

2.1.2 Main structure of the multibody kernel

There were some main points to be fulfilled with the present multibody kernel:
e The formulation shall be easily accessible and maintainable via C++ functions

e The formulation shall be easily accessible and maintainable via the Windows user interface.

2.1. MULTIBODY FORMULATION 49

In the current implementation there is one base multibody system object which contains all
information about the system. On top of this structure, there is a dynamic and static solver
class, i.e. an implicit time integration method and a incremental nonlinear solver. The solver
requires the multibody system to provide residuals and derivatives of the differential and alge-
braic equations based on assumed values.

The multibody system consists of the following components:

Elements

e Nodes

Loads

Sensors

Geometric elements

| Optimization/Variation

) ~ |Elements + Models 4

Figure: Multibody system core and windows interface.

Every object of a multibody system, see Sec. 2.1.3] and Fig. 2.1} adds a certain set of their
own (local) equations to the whole set of (global) equations. The crucial task of the Multibody
System kernel is to assemble these global equations based on the connections of the multibody
system, and to provide the system equations to the solver. Apart from that, the kernel is
responsible for setting up the model, steering the simulation, organizing in- and output of file
data, as well as accessing or modifying specific element data.

20 CHAPTER 2. HOTINT USER MANUAL

" HOTINT object library |

for multibody & mechatronics

L system)
P
7 l = < 1
Loads | Bodies Connectors
body load ﬁ rigid body <€ basic joints
force/moment finite element spring-dampers
L Y 2 | actuators |
actuate modify ‘—modﬁg'
P
o
> | Sensor |otBI|?Ck? ol o
; control (open/closed loo
8 displacement : gain func?ion generatorp
E | stress, acceleration S dansferfen ;
> —

modifier
h/' g "‘W’
\. . Signal _

generator,

e _

Figure 2.1: Structure of the multibody system (MBS).

2.1.3 Object library

The object library provides a set of rigid bodies (links), basic joints, loads and sensors, similar
to any other simulation code. As a main feature of HOTINT, there exists a variety of flexible
bodies (Finite Elements), connectors (actuators, springs, and dampers), loads, sensors, and
10-Blocks (controllers) — as outlined in Fig.

Among flexible bodies are structural Finite Elements for beams, available either in geometrically
exact formulation (for large deformation processes, ropes, cables; etc.), or in linearized form
(faster). Joints are designed such that complex combinations of bodies and joints are possible,
e.g. a point of body may move along a deformable body’s axis (sliding joint). Since also flexible
bodies are available, the object definition is based on generalized (redundant) coordinates for
the bodies.

In the core part of the code, objects are represented by means of first order and second order
differential equations, algebraic equations and jump or switching conditions. Furthermore, the
objects include standardized coupling conditions (for joints and loads), graphical representation
and measurable quantities (for sensors). These objects define bodies (links) and joints and may
be easily extended.

2.1.4 The dynamic solver — implicit time integration

The numerical time-integration tool included in HOTINT is designed to compute the numerical
solution of mixed first and second order differential equations (ODE) and

differential-algebraic equations (DAEs) up to an index of 3. The numerical solution is obtained
by using implicit Runge-Kutta (IRK) schemes like Gauss, Radau and Lobatto formulas. The
code is developed for an arbitrary number of stages, so far 20 stages have been tested resulting
in the conclusion that computing with as much as 10 stages can improve the speed of the

2.1. MULTIBODY FORMULATION ol

numerical simulation before the machine precision is limiting the convergence of the underlying
Newton method.

Different IRK schemes are defined by tableaus of coefficients which are defined by means of
ASCII-Files (file “tableaus.txt”). These files are automatically generated by means of built in
functions of the code Mathematica 5.0. While it is known that multi-step solvers can integrate
DAEs of index 2 (e.g.\ BDF), it has been found out that the inability to restart the multi-step
method quickly after a discontinuous step makes it unattractive for discontinuous problems.
Furthermore, the order of multi-step methods is limited by a comparatively low upper bound,
while it is possible to show that an order of 20 for the integration is possible and can even be
most efficient.

It shall be mentioned that in the special case, where a high accuracy of the solution of the
DAE is needed, e.g. for sensitivity analysis or optimization methods, the very high order of
IRK methods is very advantageous.

For the present case of the freeware HOTINT code, only low order IRK formulas are available,
while the higher order methods will be available in future versions.

For a description of the methods see the paper (download via homepage of HOTINT):

J. Gerstmayr, M. Stangl. High-Order Implicit Runge-Kutta Methods for Discontinuous Mul-
tibody Systems, In: Proceedings of the XXXII Summer School APM’ 2004, June 24- July 1,
Editor D.A. Indeitsev, pp. 162-169, St. Petersburg, Russia, 2004.

2.1.4.1 Index 2 Formulation

In the present implementation, only the index 2 formulation can be chosen. The index 2
multibody formalism transforms all constraints to the velocity level. This leads to a highly
stable and efficient formalism (the velocity level can be solved much easier than the position
level).

The time integration algorithm forces the constraint conditions at the velocity level in each
time step (at the integration points of each time step). The integration over the velocity does
not exactly give the fulfillment of the position level constraint, thus a small drift occurs. The
drift becomes considerably smaller with smaller step size and can be usually ignored.
Recommendations: Do not select too large time steps. If you have fast rotating bodies, it is
important to guarantee sufficient time steps during each rotation of the bodies., It is usually
sufficient to use between 20 and 100 steps per one rotation in order to get sufficient accuracy
and small drift.

Future implementations: Stabilization techniques are already included in HOTINT, but
they need to be built into the general framework. The stabilization as well as the error control
of the drift will be available in future versions of HOTINT.

52 CHAPTER 2. HOTINT USER MANUAL

[Chnose time integration class and onhr]

chose timestep |«

4’[nonnear sysh}l"ln of eq.ldi)ns}—‘

reduce step size
- (modified) Newton method
U
tolerance for Newton solver reached?

| or use full Newton
=

[assumption of discontinuous variables right? |
U-
{asanne new discontinuous va:’iabies]

1} - reduce step@

—-—[toieraﬂce for discontinuities ;eached?] t
j= ,
next ime step |+ tolerance for fime-integration reached?]—k

Figure: Scheme of the dynamic solver.

2.1.5 The static solver — incremental loading

The nonlinear solver sets all velocities and acceleration terms to zero. The solver tries to find
a static solution (if possible) starting with the initial configuration. All loads are increased
linearly between the virtual time 0 and 1, in order to achieve convergence for very nonlinear
problems. The (virtual) time step (=load increment) can be theoretically set to 1, but then the
load is applied in one step and the nonlinear problem needs to be solved at once. The static
solver tries to decrease the load increment as far as necessary in order to achieve convergence,
however, it is advantageous to specify a certain load increment which can help the solver to
speed up the computation and avoid failed steps.

The static solver does not work for kinematical systems (statically underdetermined systems).
Small rotational or translational springs can be added in order to transform the system to a
statically determined system.

2.1.6 Eigenmode computation

There are different methods used in order to compute eigenmodes of the multibody system.
The different methods are described below. The eigensolver in HOTINT does not work yet for
general Lagrange-multiplier constraints, although it is known how to compute eigenmodes for
problems with Lagrange multipliers, [I1]. Presently, all penalty-based constraints can be used
and constraints can be applied on single coordinates, e.g. in order to obtain clamped constraint
conditions.

How to compute the eigenvalues and eigenmodes for a still standing multibody
system:

Equations of motion: M (x)X+ K (x)x =0

Computed are the eigenvalues/modes of the first order system A:

2.1. MULTIBODY FORMULATION 23

x=Ax = x=[-M'K]x (2.1)

Kv = \Mv (2.2)

. mass matrix of the multibody system

. stiffness matrix of the multibody system
. eigenvectors of matrix A

. eigenvalues of matrix A

el

1.) Open the menu Edit Solver Options

2.) Set general options, they are independent from selected solver

2 a) Eigensolver.do _eigenmode computation ... if checked — eigenvalue computation on button
START.

2 b) Eigensolver.linearize _about actual solution ... use actual solution as configuration for
linearization of K/M. Eigenvalues are computed for linearization around stored solution vector
of last static/dynamic solution! All velocities are set to zero.

2 ¢) Eigensolver.use _gyroscopic_terms ... make sure that box is not checked

2 d) Eigensolver.eigenmodes _scaling _factor ... scaling factor for eigenmodes, eigenvectors are
multiplied with this factor

2 e) Eigensolver.eigenmodes normalization _mode ... 0 — standard mode, maz(v) = 1; 1 —
vlv = 1;

2 f) Eigensolver.use_n_zero _modes ... flag is not used in current version

2 g) Eigensolver.reuse last _eigenvectors ... flag is not used in current version

3.) Set the subtree Eigensolver.solver type ... define the solver type

0 ... LAPACK dsygv direct solver, LAPACK package used

The solver will calculate all possible eigenvalues/eigenmodes of the multibody system. Solver
options are not offered. For information about the accuracy see the LAPACK documentation.

1 ... Arnoldi iterative solver (Matlab), Matlab licence is needed

Eigensolver.max _iterations ... maximum number of iterations for iterative eigenvalue solver
Eigensolver.accuracy ... tolerance for iterative eigenvalue solver

Eigensolver.n eigvals ... number of eigenvalues and eigenmodes to be computed for sparce ite-
rative methods

Eigensolver.n _zero _modes ... number of zero eigenvalues (convergence check)

2 ... LOBPCQG iterative solver, implemented in HOTINT

Eigensolver.max _iterations ... maximum number of iterations for iterative eigenvalue solver
Eigensolver.accuracy ... tolerance for iterative eigenvalue solver

Eigensolver.use preconditioning ... if checked — set a value for lambda in Eigensolver.preconditioner lambda,
inv(K + AM)

Eigensolver.n eigvals ... number of eigenvalues and eigenmodes to be computed for sparce ite-

rative methods

Eigensolver.n _zero _modes ... number of zero eigenvalues (convergence check)

How to compute the eigenvalues and eigenmodes for a multibody system with gy-
roscopic terms:

o4 CHAPTER 2. HOTINT USER MANUAL

Equations of motion: M (x)X+ G (x,%)x+ K (x)x =0
Computed are the eigenvalues/modes of the first order system A:
(2.3)

HEEH

Av = Jv (2.5)

M ... mass matrix of the multibody system

K ... stiffness matrix of the multibody system
G ... gyroscopy matrix of the multibody system
v ... eigenvectors of matrix A

A ... eigenvalues of matrix A

1.) Open the menu Edit Solver Options

2.) Set general options, they are independent from selected solver

2 a) Eigensolver.do _eigenmode computation ... if checked — eigenvalue computation on button
START.

2 b) Eigensolver.linearize _about _actual solution ... use actual solution as configuration for
linearization of K /M. Eigenvalues are computed for linearization around stored solution vector
of last static/dynamic solution!

2 c) Eigensolver.eigenmodes scaling factor ... scaling factor for eigenmodes, eigenvectors are
multiplied with this factor

2 d) Eigensolver.eigenmodes normalization _mode ... 0 — standard mode, max(¥v) = 1; 1 —
vT'v = 1; Attention: For a proper drawing representation the vector v (used for normalization)
contains only the the positions (v = [\7, \—,D

3.) Check Eigensolver.use gyroscopic_terms ... use gyroscopy terms for eigenvalue computation
The eigenvalues/modes of the nonsymmetric matrix A are computed with the LAPACK dgeev
solver. Other options for this solver are not necessary. Relating to the accuracy see the LA-
PACK documentation.

The computation of the eigenvalues/eigenmodes requires a inversion of the full mass matrix of
the dynamic system. This could be a problem for very large systems.

How to create a campbell diagram, e.g. for rotordynamics:
It is very simple to create a campbell diagram with HOTINT. To create a campbell diagramm
do the following steps:

1.) Set up a rotor model, e.g. by adding RotorBeamXAxis and NodalDiskMass3D elements and
Node3DR123 nodes to the multibody system

2.1. MULTIBODY FORMULATION %)

1 a) Initialize all nodes Node3DR123 in dependence of the variable you want to vary, e.g. in
the case of the campbell diagram the rotor speed omega:

Initialization.node _initial _values = [0,0,0,0,0,0,0,0,0, omega, 0, 0]

2.) Set the eigensolver, see "How to compute the eigenvalues and eigenmodes for a multibody
system in motion"

3.) Set a parametervariation for omega (range and step size)

4.) Perform computation, the eigenvalues and varied parameter are stored in the solution file,
e.g. solpar.txt in the output folder

5.) Open the plot tool and load output file:

5 a) Click External file and select the output file, e.g. solpar.txt

5 b) Select n_rot and a eigenvalue of your choice, e.g. eigvall and create a x/y plot

6.) For a campbell diagram it is necessary to add a line with the frequency of the rotor speed.
Create a txt file with the following lines:

Example

%Comment: y=x/60 (x in 1/min, y in Hz)

3! 2

Jn_rot frequency
00

Xy

Replace the x with the max. rotor speed and y with calculated frequency value, load the file
and create a x/y plot.
7.) Label the plot

In the following is an excerpt of such a rotor example (the full example is included in exam-
ples/campbell):

Example

% Rotor Beam Example -> Campbell diagram
% parameters

he ..

n_rot

omega

1000 % rpm, vary this parameter
2%Pi*n_rot/60 % rad/s

YA
% rotordynamics model

h

% add materials (the material does not depend on omega)

heoo

% add node 1 with initial velocity
n

{

o6 CHAPTER 2. HOTINT USER MANUAL

node_type = "Node3DR123"

name = "node_1"

Geometry.reference_position = [0,0,0]
Initialization.node_initial_values =

o, o, 0, o, 0, 0, 0, 0, O, omega, O, 0]

% initial values for all DOF of node: 1...6 => pos, 7...12 => vel

¥
nl = AddNode(n)
% ...similar for all other nodes

% add rotor beams
%ho..

% add nodal disk masses

hoo..
% add bearings

hoo..

h
% set parameter variation
h
solveroptions.parametervariation.activate = 1 % do parameter variation
solveroptions.parametervariation.start_value = 0 % rpm
solveroptions.parametervariation.end_value = 80000 % rpm
solveroptions.parametervariation.arithmetic_step = 1000 % rpm
solveroptions.parametervariation.mbs_edc_variable_name = "n_rot" % name

h
% set eigensolver
h
SolverOptions.Eigensolver.use_gyroscopic_terms = 1 % use gyro terms

SolverOptions.Eigensolver.do_eigenmode_computation = 1 % must be set to 1

¥

L

Figure: Two disk rotor created with file campbell.txt

2.1. MULTIBODY FORMULATION o7

| HOTINT Plot Tool o |5
Campbell Diagram
| \ | | \ \ |
m%mm_——%———%——{———%——{———%——4 —————
|
| \ | | \ \ |
fe+0034——— 4+ —— L |t
| \ | | | 1
| ; S N |
—_ 800 ——F—— = —t——<- —
E | \ | | \ \ |
= | \ | { \ \ |
S s e e R
P I — —-—_. .
—lf ‘T X/Y-n_rot , eigval13
200-————!-———}———— X/Y-n_rot, eigval1b
. : } X/Y-n_rot , frequency
“0 1e+004 2e+004 3e+004 4e+004 5e+004 Ge+004 7e+004 Be+004
rem / (1/min)

775105 937.837 | 1333.3 @ 1000 X:92240 V: 147463

Figure: Campbell diagram created with the file examples/campell. The eigenfrequencies are
the first bending modes.

2.1.7 Parameter Variation, Sensitivity Analysis, Identification and
Optimization

In order to study the global influence of certain parameters to the simulation results, a parame-
ter variation can be performed, which e.g. gives a set of results with respect to one or two varied
parameters. In order to investigate the local influence of specific parameters on the solution, a
sensitivity analysis can be performed, which results in a matrix which shows the dependence
of a cost function with respect to the change of parameters. Based on the functionality of
the parameter variation, it is possible to perform optimization and parameter identification in
HOTINT. The implemented genetic parameter identification algorithm, documented in [12], is
used to search the best fitting model parameters in a systematic way. The cost function for
the identification /optimization can be based on the difference of a reference solution, e.g. from
measurements and simulated results. The algorithm searches the optimal parameters in a given
parameter space (e.g. parameter ranges). Multiple minima of the cost function may occur and
are no problem for the genetic algorithm. In contrast to NewtonSs method, derivatives of the
cost function with respect to the parameters are not required. In a first step, for each set of
randomly chosen parameters, a simulation is performed and the cost function is evaluated. A
specified number of best parameters is taken into account for the next generation of parameters,
the surviving parameters. Based on these parameters a new set of parameters (children) are
generated using the principle of mutation and the parameter search range is reduced. This
procedure is repeated until the optimum is nearly reached.

Parameter Variation: In the menu Edit Solver Options under the subtree
SolverOptions.ParameterVariation the parameter variation can be set.

For the start of the parameter optimization, following things have to be done:

1.) Set up your HOTINT model which contains a parameter for variation

o8 CHAPTER 2. HOTINT USER MANUAL

2.) SolverOptions.ParameterVariation. MBS EDC variable _name ... define EDC-name of the
parameter (e.g. "i")

3.) Define the range of the parameter value. The variation is repeated as long as the p; < p,.
3 a) SolverOptions.ParameterVariation.start _value ... start value of the parameter py
3 b) SolverOptions.ParameterVariation.end _value ... end value of the parameter p,

4.) Define arithmetic or geometric step method ... arithmetic: p; = p;_1 + Ap; geometric:
pi = pi—1f; pi ... parameter value at step i;

4 a) SolverOptions.ParameterVariation.geometric ... check for geometric step, else arithmetic step
4 b) SolverOptions.ParameterVariation.arithmetic_step ... set Ap

4 ¢) SolverOptions.ParameterVariation.arithmetic _step ... set f

5.) Activate variation algorithm
5 a) Check field SolverOptions.ParameterVariation.activate

In the following there is a simple example code of a parameter variation. A parameter 7 is
varied from 1 to 5 with a step size of 1 and displayed in the output window.

Example

% Test for printing in combination with parameter variation
HOTINT _data_file_version="1.1.498"
i=1

Print ("The number is ")
Print (i)
Print ("\n")

SolverOptions.ParameterVariation.activate = 1
SolverOptions.ParameterVariation.start_value = 1
SolverOptions.ParameterVariation.end_value = 5
SolverOptions.ParameterVariation.arithmetic_step = 1
SolverOptions.ParameterVariation.MBS_EDC_variable_name = "1i"

Genetic Optimization: Generally, the subtree SolverOptions.Optimization in the menu Edit
Solver Options contains methods for optimization or in other words minimization of certain com-
putation values (or cost function) from sensor signals in form of a search of the best-matching pa-
rameters. See the excerpt of the hid file of a two mass oscillator (examples/two_mass_oscillator),
which shows the optimization of a unknown spring stiffness. The optimization is based on the
difference to a reference two mass oscillator example.

For the start of the parameter optimization, following things have to be done:
1.) Set up your HOTINT model with at least one sensor (e.g. Two-Mass-Oscillator)
2.) Define computation value(s) from sensor signal(s) with SolverOptions.Optimization.sensors.

They are minimized by the optimization; if more than one sensor computation value is defined,
the sum of the computational value will be minimized

2.1. MULTIBODY FORMULATION 29

3.) Define optimized parameters and their limits

3 a) SolverOptions.Optimization.number of params ... number of parameters, which are opti-
mized (e.g. 1)

3 b) SolverOptions.Optimization.param _namel ... define EDC-name of optimized parameter(e.g.
"k1_var")

3 ¢) SolverOptions.Optimization.[min|max]vall ... define limits for the parameter search (e.g.
SolverOptions.timization.minval = 0 and SolverOptions.Optimization.maxval = 1)

3 d) Repeat a)-c) until all parameters and limits are defined

4.) Check the Genetic Optimization Options SolverOptions.Optimization.Genetic

This option should only be modified, if the computation time or accuracy of the optimiza-
tion process should be changed. For more accurate results increase the
SolverOptions.Optimization.Genetic.initial _population _size,
SolverOptions.Optimization.Genetic.surviving_population _size,
SolverOptions.Optimization.Genetic.number of children or try to change the other options in
SolverOptions.Optimization.Genetic. This is a very critical point, because the accuracy but also
the computation time is increased. Further descriptions and more detailed insight to the influ-
ence of the genetic optimization parameters can be found in previous work (R. Ludwig and J.
Gerstmayr, AUTOMATIC PARAMETER IDENTIFICATION FOR GENERIC ROBOT MO-
DELS, MULTIBODY DYNAMICS 2011, ECCOMAS Thematic Conference, J.C. Samin, P.
Fisette (eds.), Brussels, Belgium, 4-7 July 2011).

5.) Activate optimization algorithm

5 a) Check field SolverOptions.Optimization.activate

5 al) Optional: check field SolverOptions.Optimization.run _with _nominal _parameters (for checking
the consistency of the model and the nominal sensor computation value)

5 a2) Optional: check field SolverOptions.Optimization.restart (if genetic optimization should be
restarted with already known parameters from previous genetic optimizations). This option
saves computation time if results from previous optimization(s) should be used.

5 b) Set option SolverOptions.Optimization.method = "Genetic". Further algorithms are planned.

6.) Press OK-Button in Edit Solver Options, then Start! in the main window

The optimization repeats the simulation with different parameter sets and writes usually further
informations about the optimization process into the Computation Output - Window. Further-
more, a result file is written into the path GeneralOptions.Paths.sensor output path with the fi-
lename defined in the option SolverOptions.Solution.ParameterFile.parameter variation _filename
(e.g. solpar.txt). This file is needed for the SolverOptions.Optimization.restart option, see 5 a2).

7.) Check result

7a) Use optimized parameters as nominal parameters, simulate once (e.g. with 5 al))
7b1) If results are accurate enough — optimization process finished.

7b2) otherwise repeat points 3.)-7.)

Important notes:

For a higher speed of the optimization it is useful to close the GUI Data Manager as well as
the Computation Output. If you want to see some information about the optimization progress
during the computation open the static output window instead (Results — Show Static Out-
put). It is also recommended to uncheck SolverOptions.Solution.write solution in Edit Solver
Options. Otherwise the sensor data of every optimization step is written to the output file

60 CHAPTER 2. HOTINT USER MANUAL

SolverOptions.Solution.SolutionFile.output _ filename (e.g. sol.txt).

Figure: Two mass oscillator with stiffness and damping optimization.

An excerpt of the full example (included in examples/two mass_oscillator) is written below:

Example

% parameters:

hoo..

k1= 500 % N/m, stiffness spring 1, nominal value

k1_var= 350 ¥ N/m, stiffness spring 1, arbitrary value, not used
% for optimization, this value is used if
% run_with_nominal_parameters= 1

d2= 30 % N/(m/s), damping spring 2, nominal value

d2_var= 10 % N/{(m/s), damping spring 2, arbitrary value

%
0
% read vectors from file (measurement data) and create math functions

h

t = LoadVectorFromFile("...path...",1)

disp_ml = LoadVectorFromFile("...path...",2)
vel_ml = LoadVectorFromFile("...path...",3)
disp_m2 = LoadVectorFromFile("...path...",4)

vel_m2 = LoadVectorFromFile("...path...",5)

mathFunction

{
MathFunction
{

piecewise_mode= 1
plecewise_points= t
piecewise_values= disp_ml
}
}
}
nSensDisplRef = AddElement (mathFunction)

%... similar for other math functions ...

2.1. MULTIBODY FORMULATION

Y/

0

% model with varied parameters

h

% ... add masses, spring dampers, sensors with varied parameters (in this

% case only the stiffness of spring damper 1 differs to nom. parameters)

spring_damperl
{
/I
Physics.Linear.spring_stiffness= kl_var

}
nSpringDamperiVar= AddConnector (spring_damperl)

spring_damper?2
{
hoo..
Physics.Linear.damping= d2_var
}
nSpringDamper2Var= AddConnector (spring_damper2)

Y/
0
% optimization

h

nSensor= AddSensor(...) % this sensor measures the cost function (in
% this example it is the average of sum of the quatratic errors of the
% displacments and velocities of the masses)

SolverOptions
{

Optimization

{
activate= 1 Y set this flag for optimization
run_with_nominal_parameters= 0 % 1..perform single simulation
restart= 0 %0..create new parameter file
method= "Genetic" ¥ genetic: optimize using random parameters,

% best parameters are further tracked.

sensors= nSensor % sensor which measures the cost function

by

Genetic

{
initial_population_size= 20 % size of initial trial values.
surviving_population_size= 15 Y values which are further tracked
number_of_children= 15 % number of children of surviving population
number_of_generations= 4 J, number of generations in genetic optimization
range_reduction_factor= 0.5 % reduction of range of possible mutations
randomizer_initialization= 0 % initialization of random function
min_allowed_distance_factor= 0 7% set to value greater than zero

}

Parameters

{

61

62 CHAPTER 2. HOTINT USER MANUAL

number_of_params= 2 YNumber of parameters to optimize.
param_namel= "k1_var" JParameter name.

param_minvall= 3e2 YLower limit of parameter.
param_maxvall= 7e2 ¥Upper limit of parameter.
param_name2= "d2_var" JParameter name.

param_minval2= 10 %Lower limit of parameter.
param_maxval2= 70 %Upper limit of parameter.

Results of the optimization taken from solpar.txt file:

kl = 498.642 N/m

d2 = 30.0115 N/(m/s)

cost function = 3.21674e-005; The cost function in this example is the sum of squares of devia-
tions between positions and velocities (see example file for more detail).

For a visualization of the optimization results open Results — PlotToolDialog. Select External
File as Data Sources and choose the optimization file (e.g. solpar.txt as default filename) in the
output folder. Click k1 _var and Ctrl 4 cost_function value and select Add x/y. Change the
Point Style to X and the Line Style to invisible. Add a Title label X-Axis and Y-Axis. Save the
picture and repeat the procedure for d2 var. You should get the figures below.

7] HOTINT Plat Tool = 2] 3]
cost function diagram k1
| | | | | | |
35 s A ——f——f——F—— b — o —— - ——
| | | | | | |
< mi St et s bt e A
Be
A
*51.5-—X>‘—4—T+——|7x—+——# =
S VR K | j’£L><><>‘l"x
14“1><T"T"I"T"% SIS
e L F xoxx Dol S L
057 AT T s T S PR DR
py 3 5 __...,-.- %Wr; ® i
300 350 400 450 500 550 600 650 700
k1 / (N/m)

3.21674e-005 @ 498642 X: 640133 Y. 4.53709

Figure: Cost function in dependence of spring stiffness k1.

2.1. MULTIBODY FORMULATION 63

5| HOTINT Plot Teol o [(&]|

cost function diagram d2
| | | | |
|
|

i Rl H

cost function

30 40
d2 / (N/(m/s))

3.21674e-005 @ 30,0115 X:7192 Y. 4.43057

Figure: Cost function in dependence of spring damping d2.

2.1.8 The Element Concept

Elements: Bodies and connectors are elements. In fact, an element only needs to provide a
set of differential and algebraic equations and it can add forces to other elements. A rigid body
modeled with Euler parameters includes one constraint for the four Euler parameters and a
hydraulic actor includes a differential equation for the pressure build-up equations. Therefore,
bodies and connectors are treated within the same framework. Even forces or sensors could be
elements, however, there would be too much overhead in treating just everything as an element.

64 CHAPTER 2. HOTINT USER MANUAL

(=)
Element
Body2D Body3D

-»{Pos2DConstraint) CylindricalJoin —{InertialLinearSpringDamper)

egaliassel) —{ PrismaticJoint L’
-»[CoordConstraint] | >(Revolutedoint »{InertialLinearSpringDamper2D)
ANCFAxMovBeam2D) Rigid3DKardan | > RigidJomt »{LinearRotationalSpringDamper]

ANCFPipe2D

{(CGeneralizedAngleConstraint] ->[SphericalJoint —>(SpringDamperActor

> [ANCFgBeamSDTorsion *[Wonstraint] I PrismaticJoint2D *@
—{ANCFBeamShear3D —>NodalConstraintcMs) t»{ CylindricalPointJoint
—+{Rigid3DMinCoord |+ (RollingJoint3
Plate2DquadFFRF) [-{ANCFCable3D] |+ (RollingJoin2

g2l ANCFPIate3D L s [STidingJoint I0Time

I-»|SlidingJoint2D I0LinearODE
—P[FiniteEIementGeneric<Body3D>] [UniversalJoint —>[|0LinearTransformation]
FiniteElement3D L+ GeneralContact2D] —»{10Quantizer|
[TetrahedraI=TetrahedaIGeneric<FiniteEIement3D% _,[m I0STransferFunction
HexahedraI=HexahedaIGeneric<FiniteEIement3D>] —>[AngSpringDamperActor]
FiniteElement3DFFRF
—D[FiniteEIementGeneric<Body2D>] HexahedraIFFRF=HexahedaIGeneric<FiniteEIementSDFFRFﬂ
TetrahedralFFRF=TetrahedaIGeneric<FiniteEIementSDFFRF%l
Quadrilateral

HydraulicActorDA2Dh

Figure: Element class structure; elements which are not yet available in the current freeware
version via the script language (cf. section [2.4.2)) are greyed out.

2.1.9 Nodes for Direct Connection of Finite Elements

Sometimes it is more efficient no connect two elements without the application of constraints.
E.g. in the case of nodal finite elements it is advantageous if the connected elements share nodal
coordinates. Therefore, it is possible in HOTINT to define nodes, which can be afterwards used
to assign nodal coordinates to elements.

A node is defined only for a certain number of coordinates (degrees of freedom — DOF), e.g. for
a 2D position node DOF = 2, for a 3D position node DOF = 3, for a node using position and
gradient, the DOF = 12 per node. Additionally, the nodal position in the reference configuration
can be assigned to the node. This position can be later on used to find nodes or to automatically
determine the nodal number depending on the nodal coordinate.

The nodes are consecutively ordered starting with the nodal number 1. The elements can
afterwards refer to this number. When editing nodes, the available nodal numbers are shown.

2.1.10 The Concept of Loads

Loads are used to add forces at the right hand side of the second order differential equations
that describe the dynamics of a body. Loads are directly linked to bodies and they do not have
own generalized coordinates (unknowns). However, loads can depend on the body coordinates
or body deformation (e.g. in the case of pressure).

The loads can have a time-dependency which is evaluated in every step of the computation.
Loads can only be applied to bodies that provide according information of the work of external
linear, angular or integrated loads.

2.1. MULTIBODY FORMULATION 65

2.1.11 Sensors for Measuring

Sensors are used to measure certain quantities of the multibody system at the current state
of the computation. The output of a sensor is usually written to output files at certain time
steps (See Computation Settings dialog). The solution file “sol.txt” contains the output of all
sensors, each sensor in a row, versus the time (first row). Apart from output and controllers,
sensors do not influence the computation.

While local DOF _sensors can be used to measure the coordinates of any element (e.g. of a
constraint), the position, angle, distance and deflection sensors can only be applied to elements
of the type body.

Note that local second order differential variables of a body contain first [1 ... m] position
level coordinates and another [m+1 ... 2m] velocity level coordinates.

Sensors can not have own generalized coordinates (unknowns).

2.1.11.1 angles and angular velocities

The orientation of an element can be measured with CARDAN angles (or also called BRYANT
angles). The according field variable (see section for the sensor is bryant angles.

The transformation of a vector from the body fixed coordinate system into global coordinates
is as follows (see [20])

1. rotation around global z axis, ®,
2. rotation around local y axis, @,
3. rotation around local x axis, P,

It is possible to measure the angular velocity in local or global coordinate system.
Note that the time derivative of the rotation, (®,, ®,, ®.), is not equal to the angular velocity
(wg, wy, w,), neither in global coordinates nor in local coordinates.

2.1.12 Geometric Elements for Bodies with Complex Geometry

Geometric elements are used to represent a realistic shape of complex bodies in the multibody
simulation. Usually, a geometric element is either used to define objects in the background or
it is attached to a (rigid) body.

Geometric elements can be either defined with geometric primitives or by triangular meshes
(see the Section about GeomMesh). The only influence to the computation by GeomElements
is present by the automatic computation of mass, volume and inertia from the GeomElements.
Usually, the complexity of GeomElements does not influence the computational time (CPU
time), except for the drawing and loading/saving of multibody models. In the case of big
GeomMesh models, it is recommended that the redrawing time is set to a high value, e.g. set
the redrawing to every 20 seconds.

66 CHAPTER 2. HOTINT USER MANUAL

2.2 Getting started

2.2.1 Instructions for installing HOTINT on a MS-Windows compu-
ter

To begin with, you need to download the HOTINT zip-archive, and extract it to a folder of
your choice using a program such as Winzip or 7-Zip. Then run the executable “setup.exe”, and
follow the setup instructions as shown below:

First, you will see the start screen of the HOTINT setup wizard:

'11,3! HOTINT

Welcome to the HOTINT Setup Wizard

The ingtaller will guide you through the steps required to install HOTINT on pour computer.

WBRMIMNG: Thiz computer program ie protected by copyright law and intemational treaties.
Inauthorized duplication or distribution of this program, ar any portion of it. may result in severe civil
or criminal penalties, and will be prozecuted to the masimum extent poszible under the law.

Cancel | Hext » |

Click “Next” to proceed. Now you can choose the installation folder, and specify whether to
install HOTINT for all users on your computer, or just for you.

ATTENTION: Do not use a folder which is locked by windows for admin use only, e.g. the
default program folder. It is recommended to use a folder within the “documents” or “user”
folders.

2.2. GETTING STARTED 67

il HOTINT

Select Installation Folder

The installer will install HOTIMT ta the fallowing falder.

To ingtall in this Folder, click “MNext”. To ingtall to a different folder, enter it below or click "Browse".

= Use folder without access restrictions

FHOTINTS Brawse. . |

Disk Cost.. |

Install HOTIMT for yourself, ar for anyone who uses this computer:

(+ Everpone

7 Just me

Cancel < Back

Click “Next”, read the license agreement, check “I Agree”, and click “Next” in order to proceed;
click “Cancel” otherwise.

1! HOTINT

License Agreement

Fleaze take a moment to read the licenze agreement now. If you accept the terms below, click "'
Agree", then "MNext'. Otherwize click '"Cancel”.

HotInt General License (Version 1.8) -

Copyright (c) 2812 Johannes Gerstmayr, Linz Center of
Mechatronics GmbH, Austrian Center of Competence in
Mechatronics GmbH, Institute of Technical Mechanics at the
Johannes Kepler Universitaet Linz, Austria. All rights
reserved.

Redistribution and use in source and binary forms, with or -

" | Do Mat Agree

HOTINT is now ready to be installed on your computer; click “Next” to start the installation.

68 CHAPTER 2. HOTINT USER MANUAL

& HOTINT

Confirm Installation

The inztaller iz ready ta install HOTINT an paur computer.

Click "Mest" to gtart the inztallation.

Cancel < Back

After the installation process, the following screen appears:

9 HOTINT

Installation Complete

HOTIMT haz been successfully installed.

Click "Close" to exit.

Fleaze uze Windows Update to check for any critical updates to the MET Framewark.

Click “Close” to exit the setup wizard.

The installation of HOTINT now is complete, and your your chosen installation directory should
contain a number of “.dlI"-files, as well as the following folders:

documentation Contains the HOTINT user documentation, an “.rtf” license text
file, and an “example” folder with ready-to-use “.hid” example model

2.2. GETTING STARTED 69

files.

HotIntWin32 Contains the subfolder release, where the HOTINT executable “hot-
int.exe” and the configuration file “hotint _cfg.txt” are located.

output This is, by default, the output directory where the solution file
“sol.txt” containing sensor data is stored. Furthermore, the solu-
tion data files are created here in a subdirectory “solution data”, if
the flag store _data_to_files is checked in the solver options under

“Solution” (see or section for details).

userdata This folder can be used for your user-defined model files (cf. [2.4).

HOTINT is started by running the executable “hotint.exe” in the “HotIntWin32\ release” folder.
For convenience, it is recommended to create a shortcut (e.g., on your desktop or in the start

menu directory) referencing that executable. The following section guides you through your
first steps in HOTIN'T.

2.2.2 First steps

Start HOTINT by double-clicking “hotint.exe” located in the subfolder “HotIntWin32\release”
in your installation directory, or a corresponding shortcut. The program starts with an empty
multibody model.

31 Computation Output = ITELITE | 2 HOTRIT - Multihod simuishion cade

Fke Vien Edit Add Object Sys omputation Residt

b eciEcpilpad | stent | Paum= | Saue Holint Dplianz |Felad MB5| Modet - Ha Funtion-— D= P e

loaded 51 Funge Kutis Tebleevs

load chgbt

hlint Frogi HOTINT
k- ecke: aigetiing =G ererall plices. Pachs appleation_patheCF

muner of modak=0 fime= 0
selacted model nama=--Ho Fnclian-- me 0
seleched model numbzi=-1

Mo mods| selecled

The best way to experience the capabilities of HOTINT is to load one of the examples included
in the subfolder “examples” and start to experiment. Select “OpenMBS” in the “File”-menu,
and navigate to the examples located in “documentation’\examples™

70 CHAPTER 2. HOTINT USER MANUAL

o putation Output = || &S| | i HOTINT - Muttbady simulation code o [&
File Wiew Edit Add Object Systam Computstion Res

Suchenin | || evamples = @« @ B

20012013 1536 HID-Dratei
31012013 12404 HID-Datei

Catalyn HMEZ and HID ke b = b fd| Apbmchen

Here, we choose the file “double pendulum.txt”...

2.2.3 Command Line Usage

HOTINT can also be configured and started via the command line (or from MATLAB). The
syntax is

hotint [optionl=value [option2=value [...]]]
Some remarks:

e When starting hotint.exe from DOS/Matlab, the current directory MUST be the root direc-
tory of hotint.exe.

e To start the Windows command prompt, run the executable cmd.exe (under Windows 7,
just type “cmd.exe" in the search bar in the start menu and hit enter; alternatively, or in
other Windows versions, use the “Run" command). Any settings of HOTINT options via
the command line are accounted for after the HOTINT model file — possibly containing
specifications for some options too — has been read in.

e Single option specifications must not include spaces; mutually, they are separated by spaces.
e Use \" instead of ".

e In order to run several instances of HOTINT in parallel, append the &-character at the end
of each line which calls hotint.exe.

In order to open a model with HOTINT from command line use the options
GeneralOptions.ModelFile.hotint_input_data_filename

if you want to open a script model (hid-file) or

2.2. GETTING STARTED 71

GeneralQOptions.ModelFile.internal_model_function_name

if you want to run a C++ model (models compiled with HOTINT).
A few examples for starting HOTINT via the command line:

hotint.exe GeneralOptions.ModelFile.hotint_input_data_filename=\"D:\models\hotint_file.hid\"
GeneralOptions.Application.start_computation_automatically=1

hotint.exe SolverOptions.Solution.output_filename=\"dir/myfile.txt\"

hotint.exe SolverOptions.Timeint.tableau_name=\"RadauITA\"

One example using MATLAB:
dos(’hotint.exe SolverQOptions.Solution.output_filename=\"matlabfilel.txt\" &’)

In C++ you can have user-defined options. You can set these options via the command line
too:

hotint.exe MyOptions.usemodeNr=2

2.2.4 Configure Notepad-++ for HOTINT

As described in it is possible to set up systems with text-files. These files can be written
and changed in any editor, e.g. notepad+-+. Some editors provide the functionality of syntax
highlighting and an auto-complete function for user-defined languages.

For this purpose 2 specific files are stored on your computer during the installation process in
the folder documentation:

e HOTINT.xml
e hotint highlight notepad.xml

In the following it is described how to set up notepad+-+, such that these functionalities can
be used. If you are using a different editor, the steps may be very similar.

1. save file ’HOTINT.xml’ to the notepad folder 'plugins\ APIs’
(e.g. C:\Program Files (x86)\Notepad++ \plugins\APIs)

2. open NOTEPAD-++
3. click on icon
|=Tf new 1- Notepad++

Datei Bearbeiten Suchen Ansicht Kodierung Sprachen Einstellungen Makro Ausfihren Erweiterungen Fenster

IHE 3 LHE 4dEBD| 2| Ml 23| B2 =0 =R D WE &%

=

L

= new 1 l | Benutzerdefinierte Sprache ... l
‘) [

4. import file "hotint _highlight notepad.xml

72 CHAPTER 2. HOTINT USER MANUAL

Benutzerdefinierte Sprache @
Eenuizersprache| Liser Define Language = l || Transparenz 1 Andocken |
I Neue erstellen l I Speichern unter l (| Grofidein ignorieren

Importieren

I Exportieren l

Textblockdef, & Voreinstelun®y schiisselwarter I Kommentare E:Eahlenl Dperatﬂrenl

If you open a file with the extensions ’txt’ or ’hid’ with notepad+-+ there should be 2 new
features now:

e highlighting of known keywords

e auto complete (ctrl + space) for known keywords

2.3. HOTINT WINDOWS USER INTERFACE 73

2.3 HOTINT Windows User Interface

2.3.1 Using the graphics window

The 3D graphics window is used to visualize the multibody model by user-defined representation
of the bodies, joints and forces. The graphical representation might be a simplification of the
parameters used to perform the dynamical simulation.

2.3.2 Mouse control

Rotation: Press the right mouse button and move up/downwards and left /right to rotate the
model.

Zooming: Use the scroll wheel to zoom in / out or press the right mouse button and “Shift”
and move up/downwards.

Zoom selection: Use “Shift” and the left mouse button and select a rectangle to be zoomed
into.

Moving: Press the left mouse button to move the model on the screen.

Perspective: Press the right mouse button, “Shift” and “Ctrl” and move up/downwards to
change the distance of the camera to the object in order to change its perspective (the closer
you zoom, the more distorted it gets).

2.3.3 HOTINT main application window

ﬁﬂﬁ'ﬂ]‘ﬂ' - Robot_control_example.mbs =10 =]
File View Edit Add Object System Computation Results 2

sk iew optiansl Hecsntfilel JR P L. l-—'D =5 :*iﬂ{& s
HOTINT Yo

time= 0s

74

CHAPTER 2. HOTINT USER MANUAL

The main HOTINT window is used to load, save and edit models, start the computation, or
modify computation parameters and viewing settings. After a computation the results can

plotted as well as animated.

Computation Outp I =loi x|

orking module intialized
lnad=d 51 Runge Kutts Tzbleaus
Computationresel
Sysbarn iz consistent!
Initizlizaton needed O seconds
tabrame=Lobattolla
storedata=0, 01

Fejected steps =0

finizhed

1000 Timesteps.

5 Jacabians computed.

0 Full Jacobians computed.

[changes inthe limesten

7E9T Total newton iterations.
702 Ful evaluations of EvalFZ,

ztore solution

LF|

Inteqration: Lobatolll4, Lobattallla Algarithm with =2 [=Implict Trapezoidal Rule), ODE -arder=2
STEF1000 =5, Mewton_its=15, Tli=1, step=0.005, time=Ct00.5, timetogo=0:00.0, Jac=6
Computational time = 0,563 seconds

timesteps per second = 17762 steps/s

[patial laccbi evalustions: of EvalF2,

The “Computation Output” window is used to print important messages, show computation
results, the computation state, computation background information (e.g. number of Newton

iterations), error and warning messages.

2.3.4 Specific buttons

The following buttons are available in the main view in HOTINT:

2.3. HOTINT WINDOWS USER INTERFACE 7

Start computation of multibody system

Pause computation of multibody system

Stop computation of multibody system

Restart computation of multibody system

Save Hatint Options

Save HOTINT options (i.e. the configuration except for the solver settings)

Gt Reload the selected (internal) model or the open skript file

K Enable/Disable rotation of model — for planar examples

2 Zoom whole model

P Show x-y plane

e Show x-z plane

Ly Show y-z plane

ol Show user-defined view (see viewing options)

) Choose / hide axes position

& Automatic rotation

B Save single image, directory is specified in record frames dialog

=¥ Open the record frames dialog in order to capture a series of images
for an animation

[l 2 @3 Click to change viewing options to stored ones

Ctrl + Click to store current viewing options
3 independent settings are possible
Filenames can be set in GeneralOptions.SavedViewingOptions

2.3.5 HOTINT Main Menu

Outlining, the HOTINT main menu comprises the following entries which are described in more
detail below:

ﬁ"’ HOTINT - Multibody simulation code = || B ER

File View Edit AddObject System Computation Results

| Startl | Palize | Save Hatint Optians |F|e|oad MBS| Model; ---MNao Function---

o Hile
o View
e Edit
Add Object

System

Computation

Results

® 7

76

2.3.5.1 File
Select Model
New MBS
Open MBS
Save MBS (as)
Exit

Recent:

2.3.5.2 View
Edit Hotint Options

Save Hotint Options

Show Data Manager

Show Output Window

Viewing Options

OpenGL Options

FE Drawing options

Body / Joint Options

X-Y /) X-Z / Y-Z

Default View

CHAPTER 2. HOTINT USER MANUAL

Select a multibody model

Create a new multibody model

Open an existing MBS file

Save the current multibody model (as...)
Exit program

List of recent files

Open the Hotint options dialog: Access all options concerning the
MBS and the program, except for the solver options. See subsection
or section in the reference manual for details.

Saves the current configuration of Hotint options

Open dialog for viewing and animating the results of the computa-
tion; see subsection for further information.

Show the output window which reports important information, cur-
rent state of the simulation, errors, etc. during the computation and
modeling

Open the viewing options dialog: configure redrawing, animation
settings, grid (raster), standard view; see subsection or section
.16l in the reference manual for details.

Set the options for OpenGL 3D graphics: define lights positions and
intensities, transparency, shading model and lighting; see subsection
or section in the reference manual for details.

Dialog mainly to change settings for finite elements: Contour-iso
plots, color/grey mode, shrinking factor, stress-type, tiling, reso-
lution, line thickness; see subsection [2.5.5] or section in the
reference manual for details.

Used to configure the user-input and drawing of bodies and joints:
Rotation input mode, show body number, body frame, body trans-
parency

Show joints, joint transparent and joint number; see subsection [2.5.6]
or section B.16 in the reference manual for details.

View X-Y / X-Z / Y-Z plane

Select the default viewing orientation, defined in the viewing options

2.3. HOTINT WINDOWS USER INTERFACE 77

2.3.5.3 Add Object

Add Element Add a rigid or flexible body.
Add Connector Add a joint/constraint/connector or a control element.
Add Load Add a load to a rigid or flexible body: generalized coordinate load,

body load, force vector, moment vector
Add Material Add material for finite elements
Add BeamProperties Add the properties of beam elements

Add Node Add a node for finite elements

Add Sensor Add a sensor in order to measure quantities of the computation:
DOF sensor, position sensor, angle sensor, distance sensor, deflection
sensor, multiple sensor

Add GeomElement Add a geometric element to a body (preferably to rigid bodies):
mesh, mesh imported from STL file, cylinder, sphere, cube

Add Set Add a set of nodes or elements

For further information, refer to section or sections in the reference manual.

2.3.5.4 Edit

Undo Undo the last add, delete or edit command

Edit Element, Load, Material,...
Edit the properties of the already added objects

For further information, refer to section or sections [3.2H3.11]in the reference manual.

2.3.5.5 Delete

Delete Element, Load, Material,...
Delete an already added object

2.3.5.6 System

Show System Properties
Show some of the properties of the actual multibody system (num-
ber of elements, number of coordinates, constraints, etc.)

Verify System Check some of the system properties such as if all element, con-
straint, sensor and geometric element references are valid. Check if
constraints and sensors are only attached to valid bodies, etc.

Show global variables Access and edit all parameters defined in the model data file

Run Macro (Add variable)
You can load a (small) txt file in order to enter anything available
in the script language. This can be used to add global variables.

78

2.3.5.7 Computation

Edit Solver Options

Save Solver Options

Reset Simulation

Start Simulation

Stop Simulation
Pause

Load Initial Vector

Store Solution Vector

Print CPU Statistics

2.3.5.8 Results

PlotToolDialog

Plot Sensor
Plot 2 Sensors XY

Sensor Watch

CHAPTER 2. HOTINT USER MANUAL

Access and edit all solver options (such as for time integration, the
static solver, the non-linear Newton solver or eigensolver, and set-
tings concerning the in- and output of solution files, sensor data and
parameter files. See subsection [2.5.8| or section in the reference
manual for details.

Save the solver options to a configuration file

The call to this function is necessary to reset the system to its
initial state when it was built. This function is called every time an
element is added, removed or changed. The function includes:

e Restore to initial vector stored in elements

e Reset starting time to t=0

e Remove all output from data manager

e Assemble the system

e Fit the model onto the screen

Run the simulation from the starting time till the end time using
the settings defined in the solver options

Terminate the simulation

Pause the computation which can be continued later

Load a solution vector, which defines the initial conditions of the
system, from a file. This vector can be smaller than the actual vector
of initial unknowns, e.g. only initial positions can be loaded, while
the initial velocities are used from the initial conditions defined in
the elements.

Store the solution at the current time instance in a file

Prints the approximate usage of CPU power for single parts of the

multibody simulation (mass matrix, elastic forces, residual, linear
solver, Jacobian, etc.)

Open the dialog for the plot tool which offers creating, editing,
scaling, labeling, and exporting plots from one or several sensor
signals of the actual simulation or imported from a solution file.
See section 2.1 for details.

Plot the output data of a sensor versus time

Create an XY-Plot from two individually chosen sensor signals

Open a small window that shows the actual value of a sensor

2.3. HOTINT WINDOWS USER INTERFACE 79

Enable Output Enable output written into the output window. The output can
be deactivated in order to reduce the computation time for writing
into the edit window. This might be especially advantageous for
very long simulations.

Show Static Output Show the output in a separate window which does not update and
can be used to analyze or copy the output during the computation.

2.3.5.9 «“"

About Shows the “About'"-dialog with some basic information about HO-
TINT

Help Opens the “Help"-contents

80 CHAPTER 2. HOTINT USER MANUAL
2.4 Creating your model in HOTINT

2.4.1 Introduction

Clearly, when working with multibody simulation tools, the subject of model setup and confi-
guration is of central importance. In HOTINT, there are two possibilities to create a multibody
systerm:

e creating a model file using the HOTINT script language (recommended)
e building a system via the graphical user interface (GUI) (not recommended)

Both options shall be illustrated briefly in the following subsections.

2.4.2 Model setup via the script language
2.4.2.1 Script language

The HOTINT script language is a versatile tool which supports a variety of commands for (au-
tomatized) generation of multibody system components, such as bodies, loads, or constraints,
along with the definition of initial conditions and material parameters. Moreover, variables
and, in future versions, certain programming structures (e.g. loops or conditionals), can be
used together with a set of mathematical operations similarly to other programming langua-
ges. Furthermore, just like the user-defined variables, also any HOTINT option or parameter
may be specified via an input file (cf. . Details on the handling of variables and some
general remarks with respect to the syntax of the script language are given below; for further
information on the HOTINT file and folder structure see section

Parser

The Parser used in HOTINT allows to use basic mathematical operations in the model files.
Furthermore it is possible to copy parts of the data structure and work with previously defined
variables. More details are provided in the following.

Data structure

All assignments in the model file of the form “left-hand side = right-hand side" where the left-
hand side names the variable or object that is assigned a value (identifier), and the right-hand
side is a number, vector or an evaluable expression (value). Between identifiers and values there
may be as many spaces or tabs as desired by the user. However, line breaks need to be set
according to the specification.

A valid right hand side entry - or variable name - may include alphanumeric characters and
underscores, but no interpunctuation characters; comments start with the % character.

For example, the syntax for the definition of a floating point variable with the identifier “a"
and the value 3.0 ist simply
a=3.0

After this definition, “a" can be used and referred to at any point below in the script, for instance
in the definition of another variable “b" combined with a basic mathematical operation

b=a

2.4. CREATING YOUR MODEL IN HOTINT 81

Optionally, the data entries can be arranged in named tree-structured containers which can be
defined using curly braces. Such containers may hold any set of data entries, and, moreover,
can be nested, i.e. can contain other containers as well. Access to each level and entry in
these data structures is possible using the “."-operator, similar to the access to (nested) class
members in Java or C++. See the following example for clarification:

Assume we want to describe a material — let us call it “m1" — using its elastic modulus “E" and

Poisson ratio “nu", we could create a container named “m1" via

ml
{
E = 1E11
nu = 0.45
}

and access the parameters then via
ml.E

or

ml.nu

at any point in the file. Note that, within “ml", i.e., within one level in a container, the
parameters specified there also may be referred to “directly", e.g. m1 E = 1E11 nu = 0.45
temp = 2*E

Now, if we had several materials “m1",“m2",“m3"..., as the one above, we could also define a
nested structure “materials" — again a container — holding any of these material containers, for
instance

materials
{
ml
{
E = 1E11
nu = 0.45
}
m2
{
E = 1.5E11
nu = 0.47
}
m3
{
E = 2E11
nu = 0.46
}
}

where the access works analogously, e.g.
. = materials.m2.E

In summary, the entries on the right-hand side in an assignment can be of the following types,
depending on the type of the left-hand side:

82 CHAPTER 2. HOTINT USER MANUAL

bool = yes % boolean can be ’yes’ or ’no’

integer = 1 % integer number

float = 0.628el % floating point number

string = "text" % string variable

vector = [1.,2.,3.,4.] % vector, with ’,’ as separator

matrix = [1.1,2.1;1.2,2.2] % matrix, with ’,’ and ’;’ as separators
Container = other_Container % entire tree

Constants and variables

As shown exemplarily above, it is possible to assign existing variables to new names. The
variables on the left-hand side can be accessed by their name and/or location in the data
structure. The Parser itself also includes intrinsic constants like pi.

a=1
b=2
SubContainer
{

b =12

c =13
by
roota = a % assign the content of variable a to roota
rootb = b % assign the content of variable b to rootb
subb = SubContainer.b % assign the content of variable b in the

% SubContainer to subb

Operations

It is also possible to perform simple mathematical operations like adding, multiplying and
accessing components on the right-hand side. These features only work on previously assigned
variables of the same type.

a=2

b=23

vec = [1,2,3]

mat = [1,2;3,4]

% VALID OPERATIONS:

c = atb % adding two numbers

d = a*b % multiplying the numbers

vec2 = vec + vec % adding two vectors

two = vec[2] % access to component of a vector
three = vec[b] % access in succession

four = mat[2,2] % access to component of a vector
vec[2] =7 % access in right hand side expression

% NOT WORKING:
vec3 = 3x*vec % type mismatch
scalar = vec*vec % not implemented as operator
mat_succ = mat[mat[1,1], mat[1,2]]
% not implemented succession with multiple °,°

2.4. CREATING YOUR MODEL IN HOTINT 83

Built-in functions

Several mathematical functions are implemented in the Parser and can be used in right-hand
side expressions. This feature includes

® power
a = sqr(3) % square
= sqrt(a) % square root
c=2"3 % power

e exponential and logarithm

hl = exp(5) % exponential

h2 = 1n(h1) % logarithm base e
h3 = 1o0g(1000) % logarithm base e
h4 = 1o0g10(1000) % logarithm base 10

e trigonometric

el = sin(pi/2) % sinus function
f1 = cos(pi/2) % cosinus function
gl = tan(pi/2) % tangens function
e2 = asin(1)

f2 = acos(1)

g2 = atan(1)

g22 = atan2(1,1)

e3 = sinh(pi/2)

£3 = cosh(pi/2)

g3 = tanh(pi/2)

e unitarian operators and functions

b = -a % change sign

¢ = fact(10) % factorial

i1 = abs(-273.15) % absolute value

i2 = fabs(b) % absolute value

dl = round(1.61803399) % round to nearest integer

d2 = floor(1.61803399) % next interger lower or equal
d3 = ceil(1.61803399) % next integer larger od equal
tam = transpose(mat) % transpose a matrix

h = heaviside(a) % heaviside function

e two parameters

one = min(1,2) % minimum
two = max(1,2) % maximum
three = max(min(1,2),min(3,4))

e vectors, and matrices

84 CHAPTER 2. HOTINT USER MANUAL

v = [1, 2] % vector v = [vi, v2, ...]
d4 = vabs(v) % sqrt ((viIN~2+v2\"2+...))
d5 = varg(v) % atan2(v2, v1)
mat = [11,12;21,22;31,32] % matrix m = [mil..mlc;m21..m2c;...;mrl..mrc]
two = cols(mat) b
three = rows(mat) b
e logic
f = (2==3) % equal
t = If % negation
t2 = (2<3) % less than
t3 = (2<=3) % less than or equal to
£2 = (2>3) % greater than
£3 = (2>=3) % greater than or equal to
f4 =t && £ % logical AND
td =t || £ % logical OR
seven = 15 & 23 % bitwise AND
fifteen = 6 | 13 % bitwise OR

2.4.2.2 Model setup

Any consistent file written in the script language (‘HOTINT data input file", with “hid" file-
name extension; cf. section can be loaded and used in HOTINT. In short, it can contain
any setting of options for HOTINT itself (see section [2.5]or for details), and fully describe
the multibody system. On the other hand, if a model is loaded and edited, or created comple-
tely via the GUI (see the following subsection [2.4.3)), and then saved to a file, the output again
will be in terms of the script language. For a detailed description of all supported commands,
as well as corresponding example code fragments for illustration, please refer to the reference
manual under section [3.15] Sections [3.2H3.11] on the other hand, contain detailed information
about all multibody system components available in HOTINT, i.e. various types of elements
such as rigid bodies or structural finite elements such as ANCF beam elements, connectors,
loads, sensors, and geometrical elements.

Concludingly, it should be pointed out that the best way to get to know how the whole thing
works probably is — as already mentioned — to start and experiment with ready-to-use example
files (see also [2.2.2)), which are located in the folder documentation/examples in your HOTINT
directory and for download at the homepage. See also the the minimal examples in the reference
manual.

2.4.3 Model setup via the graphical user interface

The generation and setup of a multibody system via the GUI is more or less self-explanatory:
Use the main menu entries “Edit" (cf. and “Add Object" (cf. to edit existing
or add new components to the system, specify parameters, and define initial conditoins. The
model can be saved — as model file in HOTINT script language — at any time. Before an object
is added or edited via the GUI, the model is saved automatically. The resulting file is located
in the application path and named model asv.hmec.

2.4. CREATING YOUR MODEL IN HOTINT 85

However, note that the full functionality and flexibility is only accessible via the direct use of
the script language.

For details concerning the settings for parameters of single multibody system components please
refer to the HOTINT reference manual, sections |3.2H3.11}

86 CHAPTER 2. HOTINT USER MANUAL

2.5 Options Dialogs

2.5.1 Introduction

Via the Windows user interface a wide range of options can be specified to customize HOTINT,
concerning, for instance, the graphics, solver or in- and output. The corresponding option
dialogs are documented in the following; for a full and detailed listing of all available options
refer to the reference manual, section [3.16]

Note that any of these options can be set just like any variable in a script language model file
(cf. also subsection by using its full data name (category + data name according to the
options reference). For example, if you would like to specify a maximum time step of 5 ms
within the model file, you would just add the line (cf. “Timelnt" in the SolverOptions |3.16.1])

SolverOptions.Timeint.max_step_size = 0.005

In case of several settings within SolverOptions — or at any other level (such as “Timeint") for
that matter — you may use the syntax as with the nested “data containers" described in the
subsection See the following example for illustration:

Solver(Options
{
end_time = 1 %1 second simulated time
Timeint
{
max_step_size
min_step_size
}
Newton.max_modified_newton_steps = 20 Ymax. number of modified Newton steps

}

le-5 Jmax. step size for time integration
le-3*max_step_size ¥min. step size for time integration

which would be equivalent to

SolverOptions.end_time = 1

SolverOptions.Timeint = max_step_size = le-5
SolverOptions.Timeint = min_step_size le-3*max_step_size
SolverOptions.Newton.max_modified_newton_steps = 20

2.5.2 Hotint Options

Access: View — Edit Hotint Options

2.5. OPTIONS DIALOGS

| 1| Edit Hotint Options

-- GeneralOptions
[ViewingOptions
- PlotToolOptions

Solver

EDCFarser

output_level
output_precision_double
output_precision_vector
output_precision_matrix
max_error_messages
max_warning_messages
computation_output_every_x_sec
[werite_mass_and_stiffness_mati
default_log_filename
critical_log_file_size
file_output_level

6

8

6
10
100

100
L 2

hatint.log |

10

oK

Apply

CANCEL

2.5.2.1 LoggingOptions

LoggingOptions

Solver

EDCParser

87

Specify which, how detailed, and in what intervals information con-
cerning the model initialization and solution procedure should be
written to the Output-Window and Log-File, respectively

Special configurations for log information concerning the solution
procedure

Special configurations for log information concerning during the par-
sing of the model data file

2.5.2.2 GeneralOptions

Application

Paths

ModelFile

Measurement

OutputWindow

SavedViewingOptions

A set of general options concerning the application itself. See “Ap-
plication" under [3.16.3]in the reference manual for details

Access and set paths of the executable, for the input of input data,
and for video/single frame/image/PlotTool image exports

See “ModelFile" under in the reference manual for details

Choose units for angles and the legend and values of the contour
plot

Limit the maximum number of characters in the output window

Define the file names where viewing options shall be stored to when
clicking one of the buttons "1’, ’2’ or ’3’

88

CHAPTER 2. HOTINT USER MANUAL

2.5.2.3 ViewingOptions

Animation

Misc

GeomElements

Origin

Grid
CuttingPlane

StandardView

Bodies

FiniteElements

Connectors
Loads
Sensors

OpenGL

ApplicationWindow

DataManager

OutputWindow

View3D

Settings specifying how the animation via the Data Manager should
be performed

Various settings concerning the redraw frequency during the simu-
lation, and the thickness or size of points and lines

Settings concerning the GeomElements, e.g. line thickness

Choose if and how the origin of the coordinate system should be
displayed

Specify and show a background coordinate grid
Detailed options for the configuration of up to two cutting planes

Define standard views of the system via specification of rotation
axes and corresponding angles

Options specifying how bodies in general, and rigid bodies and parti-
cles in particular, should be drawn and tagged; also includes settings
for velocity vectors

Settings concerning the drawing and coloring of the contour plot,
and of finite elements and corresponding meshes and nodes

Options specifying if and how constraints should be displayed
Define if and how loads should be displayed
Define if and how sensors should be displayed

Settings for lighting, light sources, transparency, shininess, and color
intensity.

Size and position of main window of HOTINT

Settings concerning the data manager, e.g. how often the solution
is stored.

Settings concerning the output window (left of main window).

Define the perspective and sensitivity of mouse movements.

2.5.2.4 PlotToolOptions

PlotToolOptions

DataPoints

View

General setting for the Plot Tool (cf. also section [2.7)), concerning
redrawing, scaling, and some size factors for labeling and axis/tick
styles

Settings for marking of data points

Configuration of size and position of the plot window and the plot
itself

2.5. OPTIONS DIALOGS 89

Watches Initial size of sensor watch windows

Axis Settings for ticks and labels for both x- and y-axis of the plots

Grid Specification of line types for background coordinate grids in the
plots

Legend Specification if and where a legend should be shown

SavePictures Options concerning the export of image files from a plot

2.5.3 Viewing Options

Access: View — Viewing Options

¥ 5
Viewing cptions general &J

Redraw:. | every 2sec

[draw arigin ¥ zhow contact points W draw texts in front of bodies
Origin size; [IT
Apimation: I1"';“""""—'"""""—"' every frame W animate fram beginning
OpeniGL window size: W) W W show startup banner
~ Grd—
qrid type qrid zize: [2— qrid step:]T
]”':' grid Ll qrid position: i-'l | |-'I 1EI
— Standard wiews [consecutive rotations) — Cutting plane —

0 angleNo: h_]7 uze cutting plane
HYE e |0 * angle Mo ITE_ distance: 10.2

0 * angle Mo r3_ nnrmal:]l:l] ||J o |1 z

Cancel Apply Ok

Viewing options allow changing some of the parameters for visualizing the multibody model:

redraw Change the time between subsequent redraws of the model during
the simulation in order to speed up the simulation

draw origin Draw the origin (0,0,0) and the orientation of the global coordinate
system
origin size Length of the drawn axis of the origin

show contact points If checked, contact points are shown

90

CHAPTER 2. HOTINT USER MANUAL

draw texts in front of bodies

animation

This option will draw texts much closer to the viewer such that they
are visible even if they are hidden in reality by an object. Howe-
ver, due to distortion, the texts might appear at slightly different
positions.

Your animation will run faster if you draw e.g. only every 10 or 50
frames of the stored computation steps

animate from beginning

OpenGL window size

show startup banner

grid

standard views

cutting plane

Pressing the animation button will always move to the beginning of
the simulation

For screen shots and animation, this lets you adjust the size of the
visualization screen in pixels. Best results are obtained if you chose
standard resolutions such as 640x480, 800x600, etc.

If checked, the startup banner is shown

Chose a grid type (orientation), the grid size (length = width),
grid step and a grid reference point in order to show a grid for
determining positions of the selected model

The selection of these parameters allows you to define a standard
rotation with respect to the global axis 1, 2 and 3 (= x,y,z) by
certain angles. The standard view is x-horizontal and y-vertical, z
points out of the x/y plane.

Define a cutting plane by its normal vector and distance from the
origin in the direction of the normal; any part of the system lying
beyond that plane (in direction of the normal) is cut, i.e. not dis-
played. A second cutting plane and additional configurations can
be defined and accessed via the menu View — Edit Hotint Options
— ViewingOptions — CuttingPlane.

2.5.4 OpenGL Drawing Options

Access: View — OpenGL Drawing Options

2.5. OPTIONS DIALOGS

#

OpenGL drawing options

i~ Light1
W enable light [include light position
. ambient; 25% diffuze: 405 specular; 407
| | |
positian: |'I Y |'I & {-1
Light2
¥ enable light [include light position
I ambient; 25% diffuze: 40% specular: 0%
i i Il
pogition:; #; |0 T |3) Pl
h aterial -

gpecular color intensity: 1005

91

v immediate apply

Cancel

transparency: 20% shininess: 4%

p— i i

¥ smoath shade madel v enable lighting

Apply Qk.

The OpenGL graphics includes some settings in order to customize the drawing. Yet it is not
possible to choose the surface property of a single body, but the material is set for all bodies
to the same values, like shininess, transparency, specular color. Sometimes a specific lighting
model improves the visibility of an object or the understanding of its geometric complexity.
Otherwise the default values can be kept.

There are two independent light sources included, it is possible to activate only one or both

lights.

enable light

include light position

ambient

diffuse

specular light

position

transparency

Enable the light source

Include light position in the computation of the intensity. If not
checked, objects that are farther away from the light will have the
same lighting conditions as near objects

Percentage of ambient light, the intensity of the light is independent
of the direction of the light

Percentage of diffuse light, the brightness is dependent on the posi-
tion and orientation of the surface with respect to the light source

Percentage of specular light, creates highlight on surfaces like polis-
hed metal or mirror-like surfaces.

Position of the light source

The percentage defines the transparency of the material where 0% is
not transparent and 100% is fully transparent. Note that the trans-
parency is dependent on the order of the objects which are currently

92

shininess

specular color intensity

immediate apply

smooth shade model

enable lighting

CHAPTER 2. HOTINT USER MANUAL

not sorted in HOTINT. This can cause strange transparency effects
in meshed objects.

This factor defines the radius of shininess of the specular light,
100%=small radius, 0%= very large radius

Defines the amount of specular color reflected by the material

If this is activated, all changes in the dialog are immediately applied
to the graphics window

Use this to activate smooth shading, which improves the drawing of
round surfaces. Otherwise, flat shading is activated (piecewise flat

polygons)

If not activated, the brightness is not depending on the position of
the light with respect to the surface

2.5.5 Finite Element Drawing Options

Access: View — FE Drawing Options

Finite element drawing options

Contour plot options -

W Maximum value: | 1|

W Mirimum value: |0 [inverteolors [grey mode | nonlinear scale

Adjust range j]" auta

Color tllng:]I ||||||||||||||| L

Shrinking factor: | 1 Deformation scale factor:] i

Show varizble]'-,'elncitv
[plotinterpolated
—Finite element drawing

[show mesh
v show solution

[show nodes

W draw surface elements only

elem line thickness: |1 node size; | 0.001
Cancel

LJ Components jmagnitl_ - Llnits1N|m -

[animate scaling factor [zcale rigid body displacements

¥ show modes axis tiling

I draw flat elements axis resolution

L e S sl o M e e]
ooss-sectionres, T 4
e |

1 (] 1
solid FE resolution T | 2

I show node numbers

Azl

2.5.5.1

Maximum value

Minimum value

Adjust range

Contour plot options

If activated, the maximum value of the contour plot is limited to
the specified value (in the specified units)

If activated, the minimum value of the contour plot is limited to the
specified value (in the specified units)

Auto-adjust the range of the contour plot

2.5. OPTIONS DIALOGS 93

auto

color tiling

invert colors
grey mode

nonlinear scale

Shrinking factor

If activated, the minimum and/or maximum value of the contour
plot is chosen automatically, unless it is explicitly specified in the
Minimum /Maximum value setting.

The number of different colors in the contour iso-plot. The max-
imum is 32 different colors, a larger value leads to a continuous
color

The color bar is inverted
Only black to white colors are used

A nonlinear scale of colors is used. This can be interesting for Mises
comparison plots e.g. with edge singularities

The size of the finite elements is multiplied with this factor. Use a
value of 1 for displaying the original size and e.g. 0.9 in order to
display a reduced view of the elements

Deformation scale factor

Show variable

Components

Units

plot interpolated

A factor by which all deformations are magnified in the graphic
representation. For better visualization of small deformations you
may use a large scale factor

The field variable chosen from this list is diplayed in the contour
plot.

If a non-scalar field variable has been chosen, here the absolute
value (magnitude) or component of the field variable which should
be displayed in the contour plot can be chosen.

Select units for the chosen field variable.

If activated, field variables defined on a finite element mesh are
plotted interpolated in the contour plot

animate scaling factor In order to view eigenmodes or static deformation, the scaling factor

can be animated

scale rigid body displacements

If activated, all rigid body displacements are scaled by the factor
specified in the field “Deformation scale factor” (in the graphic re-
presentation)

2.5.5.2 Finite element drawing

show mesh
show modes
show solution

draw flat elements

Shows the mesh outlines
If checked, modes are shown via Chladni isolines
Shows the mesh surface

If checked, draw plate elements as flat polygons, otherwise draw
plate elements with specified thickness

94 CHAPTER 2. HOTINT USER MANUAL

show nodes Shows the nodes of the mesh
show node numbers Displays the numbers corresponding to the nodes

draw surface elements only
If checked, only finite elements on the surface of a mesh are drawn

elem line thickness Line thickness for element outline
node size Size of nodes
axis tiling Tiling specifies the number of quadrangles to draw a curved beam

or plate element in axial direction

axis resolution Resolution specifies the number of quadrangles used to draw the
contour solution of a beam or plate element in axial direction

cross-section resolution
Resolution specifies the number of quadrangles used to draw the
contour solution of a beam or plate element within the transverse
direction (discretization of the cross-section)

solid FE resolution Resolution (tiling) used to approximate one solid finite element (tri-
angle, quadrangle, hexahedral, tetrahedral, etc.)

2.5.6 Body / Joint Options

Access: View — Body/Joint Options

' '

Rigid body / Joint / Sensor options

W Lze degrees instead of radiant
Fotationinput ™ Eulerangles Rotation Y2 Euler parameters
¥ show loads Load draw size: |Be-00F

- Rigid bodies
[zhow body numbers [show body local frame Local frame size:]_D—
W bodies ransparet W draw bodies smooth
W show body outline W show body faces
— Connectaors
[V show connectors v connectors bansparent [show connectar numbers

[v show contral objects

—Sensors

[show sensors ¥ sensors transparent zensor size; |0.2

Cancel Apply k.

2.5. OPTIONS DIALOGS 95

2.5.6.1 General

use degrees instead of rad.
Checked = use degrees (0° - 360 °) instead of radiant (0 - 27) for
the input of angles and angular velocities. The stored values are
always in radiant.

rotation input Select input mode for spatial rotations: Euler angles = rotation
about Z-X-Z, RotationXYZ = rotation about X-Y-Z, Euler para-
meters = direct input of 4 Euler parameters

show loads If activated, all loads in the multibody system are shown

load draw size Specification of the size of the displayed loads

2.5.6.2 Rigid Bodies

show body numbers Checked = display element number of the body

show body local frame Checked = draw local frame of body

local frame size Drawing size of local body frame
bodies transparent Checked = draw bodies transparent with factor defined in OpenGL
options

draw bodies smooth Interpolate GeomElement meshes with increased smoothness

show body outline Checked = draw the outline (edges) of a body or GeomElement

show body faces Checked = draw the surface of a body or GeomElement — if “show
body outline” and “show body faces” is unchecked, the bodies are
not drawn

2.5.6.3 Connectors

show connectors Checked = draw connectors

connectors transparent
Checked = draw connectors transparent with a factor defined in
OpenGL options

show connector numbers
Checked = display element number of the connectors

show control objects Checked = control objects are drawn.

2.5.6.4 Sensors

show senors Checked = show sensors
sensors transparent Checked = draw sensors transparent with factor defined in OpenGL
options

sensor size Size of sensor local axes

96 CHAPTER 2. HOTINT USER MANUAL

2.5.7 Data Manager

Access: View — Show Data Manager

Data Manager [] |

— Current data unit infarmation-

Drata unit:]135 irne: {EEDE? delay mz: |25

‘; J ﬁ Fiun animatiu:uni

 General information

Data units stored: | 244 temory used, Kb |11

Load fram a file] Savetoafile | Save special | Cloge |

The Data Manager is used to draw the solution at certain time instants where the data has been
stored internally. The data is stored either in internal memory or written to the hard disk in the
output directory, depending on what was specified for the option Solver Options — Solution
— store__data_to_files. Make sure to activate this option in cases where the simulation data
would exceed the available main memory. The sliding bar can be used to view certain stored
data units and analyze the solution, which is possible even during computation. It is preferable
to set the redraw time of the model view very high (— Viewing options — Redraw) in order
to be able to smoothly animate the solution during a long computation. The analysis of the
solution during the computation can help to detect model input or convergence errors at an
early stage or allows you to run your simulation infinitely (set end time e.g. to 1e6) and to stop
the simulation at the point of your consideration.

The button “Run animation” starts the animation either from the beginning (data unit 1) if
Display Options — Animate from beginning is set, or otherwise from the current position of
the slider bar.

There are two data formats: The .txt format which stores data in pure text (space-separated
data):

line 1: Version identifier

line 2: checksums, first value = size of data, second value = checksum

line 3: number of available data units

line 4: first line of data unit: time, size of data, numberl, number2,

The .dat format uses windows serialize functions and can not be edited.

Data unit Actual data unit drawn

time Actual time instant drawn

delay Delay used between frames when running animations

Run animation Start animation

Load from a file Load a stored solution for animation. Note that only the stored

solution that belongs to the same multibody model can be loaded.

Save to a file Save the data units into a file. You can choose to save in .txt format
which saves the data of each time point in one line (row), or in .dat
format. The dat format is considerably faster and smaller in size.

2.5. OPTIONS DIALOGS

Save special

97

Save selected data units into a file: specify first data unit, last data
unit and the increment between stored data units. The data can
be stored in .txt, .dat and also as .sol file. Choosing the same
number for the first and last data unit allows to use this solution as
a .sol solution which can be used as an initial vector for a further
computation.

e T ™
Save special

The data units to be zaved:

o

Last data unit 100

Save even) .. data 15

MHumber of data

First data unit

Ok | Cancel]
L™ "
2.5.8 Solver Options
Access: Computation — Edit Solver Options
¥ | Edit Solver Options &
- SolverCptions ;étart_ﬁme 1 ljl
- Timeint ;énd:ﬁhe .
i Stalic I do_static_computation
- Newton
- Eigensolver _"I'|mE|nt
- Linalg ptatic
... Discontinuous :j\]é-j\lfgn
= SF'IUﬁ':'n Einensolver
i SolutionFile i
i ParameterFile !‘"-'alf-:’
. Semsar Discantinuous
- Element Solution
I'%'I--Parameterll'ariaﬁon Element
..... Var2 it . e
Bl Optimization f‘a| ameterVariation
- Genetic [Optimization
... Parameters geng;i}j'\,-i'ty
I'_fl--Sensitiuit'y Misc -
i -Parameters .
El-Misc
L CPU
(- GeneralOptions
.- Paths
I OK Apply CAMCEL
2.5.8.1 SolverOptions
SolverOptions Set start and end time, and choose between dynamic and static
computation
Timeint Settings concerning the time integration, such as minimum and

maximum step size, the maximum index of the differential algebraic
equations, or the time integration scheme

98

Static

Newton

Eigensolver

Linalg

Discontinuous

Solution

Element

ParameterVariation

Optimization

Sensitivity

Misc

CHAPTER 2. HOTINT USER MANUAL

Settings of the static solver, e.g. concerning load increments

Parameters which specify the accuracy goal of the Newton solver,
and other options regarding the latter (e.g. settings for numeri-
cal differentiation, maximum number of modified or full Newton
steps,...)

Settings concerning the modal (eigensystem) analysis, such as num-
ber of eigenvalues and maximum iterations, the accuracy goal, etc.

Specify whether to use s sparse solver for the solution of the linear
systems in the Newton procedure

Settings regarding discontinuous systems (e.g. due to friction, con-
tact, etc.)

A set of options defining how, in which intervals, and where the
solution data and data of the parameter variation procedure should
be stored

Specify whether to store intermediate finite element matrices, and
to compute the Jacobians elementwise

Settings concerning the parameter variation procedure: (de)activate,
inital and final value, arithmetic or geometric step size, and the path
and variable name of the parameter to be varied in the model data
input file

Settings regarding the optimization procedure: (de)activate, choice
of method, settings for the respective parameters

Specify if and how the sensitivity of sensor values with respect to
certain parameters should be analysed

Various settings regarding, for instance, a default model data file,
or multithreading in the computation

2.6. DATA VISUALIZATION AND GRAPHICS EXPORT 99

2.6 Data visualization and graphics export

2.7 Visualization Tool

In HOTINT it is possible to visualize the simulation data with an integrated tool.

The Visualization Tool consists of two windows, one containing the most important control
elements and a separate window for the plot itself. Both Windows can be blinded out if
required.

One can display the data directly from the current simulation run or from a file from a previous
simulation. The data can be displayed as y(t) using a single data set and also as y(x) when
two datasets are combined. The main advantages of using an integrated tool are that we are
able to display the data on the fly and create serviceable graphs automatically.

As in most visualization tools each data line can be assigned a color, linestyle and a marker
shape. Together with title, labels, positions and other options the graphs’ layout information
may be stored for later use. As mentioned above a dialog provides access to the frequently used
options. To keep the dialog slim, for both windows an additional context menu is implemented
and some hardly ever used options are only available via the full options menu.

The tool is intended for visualization only, so we do not intend to include curve fitting routines
to it. Still it is possible to create a consistent dataset for mathematical functions and add those
to the graph. For a deep analysis of the result like curve fitting an external program must be
used.

The model itself can be programmed such that for selected sensor values a visualization window
is automatically created when the model is loaded. For simulations with multiple cycles it is
possible to generate graphs with identical properties for comparison.

BlotToal - Window =1 =5
Layouts
Diata Souscss Diats Sets (i be crevn]
% Sergors " External Fle Lire Mare [
— | yxd
Sermers (drectly) =
Time s
o 5
RadPas [
R 3dve!
F3lnoacry
R3d0cAC
sy | A tf
Titleang Atz Labels Prepertiegafine 13 ..,
Name:
b wix}
Phage Disgran
Ling Color: _ Line Style
(e L — |
Ao Thickess: Part She
pasiton [m] [—-] [—e—=][=
At
ok Ranae
wainoty [ms] £ r
Ranged: |6M3LLRLe (197330520873
St P | Range¥: |©9985C49352 [0.004

Figure 2.2: PlotToolDialog

2.7.0.1 Data Sources

The top section of the Dialog is dedicated to the selection of the data source. The left side
allows to pick either the Sensors of the current model or an external (solution) file, most likely
a soulition file from an other computation. The right part displays the available datasets. With
the Buttons any highlighted item in the left list can be added to the right list of drawn lines.
It is possible to plot a line over time (T/Y), but also combining two sensors for a (X/Y) graph.
In this case exactly two lines must be selected in the list.

100 CHAPTER 2. HOTINT USER MANUAL

2.7.0.2 Graph Window

The middle section of the Dialog controls the content of the graph window, on the left side the
caption and axis labels as well as the range of the plotted data can be chosen. On the right
hand side the proberties of an individual line can be changed. Note: the line style can only be
changed for thin lines (restriction from Windows Draw function). The general options control
the redraw intervals and whether the range is adapted to the full range during a computation.

% HOTINT Plot Toal - Ei
Phase Diagram
0.0044 : + ———
0003:____I_7’_’|___.___J|‘;‘T * V()
. 0.002- 0 S S e
L , | - | | v
E Gl i ~—— S ——A
o g4 L L 4 %
0 S A
2 0,001+ :
2 A | &
0002 — —— 4 ————— - ——f—— T —]
gl —— % L L 7
-0. , —|— ﬁ| —[‘ ’—
0.004 | | Mo | o™ | |
-0.006 -0004 -0002 0 0002 0.004 0.006
position [m]
0.00344416 @ -0.00203415 £ -0005456 1000534

Figure 2.3: PlotToolGraph. Displays a datasets over time

2.7.0.3 Export

It is possible to export the content of the graph window to a file. Destination folder and
filename can be defined in the textboxes. The resolution and all formats for the output can
also be chosen.

2.7.0.4 Other Buttons

The remaining individual Buttons in the Dialog have the following effect:

| Button | description
Show Graph reactivates the Graph Window
Hide hides the control dialog (reactivate in the Status Bar of the Graph Window)
Scale Graph computes the range of the full dataset and rescales the axes accordingly
Redraw performs a redraw operation manually (considers auto-rescale flag)
Axis Equal forces equal scaling of both axes (mostly used for X-Y-Plots)
Print Graph print dialog for the Graph Window
Update Options || Applies changes made in the HOTINT Options Dialog

The options available in control part of the dialog are only a selection the entire set. Many
more are available in the HOTINT Options Dialog, in the subtree PlotToolOptions.

2.7. VISUALIZATION TOOL 101

¥ flag draw_every_nth

| Edit Hotint Options
[l LoggingOptions guto_redraw_interval
;""5':'|“‘E" [auto_rescale
--Generalﬂpﬁons o e
- ViewingOptions ficks_size_factor
(- PostProcOptions line_thickness_border
" a'] line_thickness_factor

i----'u.ﬂiatdﬂes draw_every_nth
L Ais v vertical_marker
;----Grid ¥ draw_only_to_time
i i-Legend Niew
i SavePicture -
[PreProcOptions Miakims
Axis
Grid
Legend
SavePicture
]PIntTuDIDpﬁons.Legend.shuw | oK | Apply I CAMCEL |

Figure 2.4: PlotToolOptions. In this Dialog many settings for the Graph can be done here, e.g.
sizes, grid, ...

2.7.1 How to record a video

In order to create a video of your simulation perform the following steps:
e Run the simulation

e Be sure that enough data is stored in data manager

e Create a folder where the image files shall be stored

e Viewing options: set resolution to the desired value (e.g. 1024x768)

e Set all drawing options (with or without mesh, sensors, loads, etc.)

e Remove (drag+drop) all windows (data-manager, options-dialog, etc.) from the main win-
dow

e Click on the video—camera button (cf. subsection [2.3.4]) to open the “Record frames"-dialog

e Once you have activated the image recorder, images are written at every update of the
drawing window, even when the simulation has been stopped and you just resize or move
the window

e When you are setting the path where the images will be stored, be sure that the folder already
exists and that your path ends with a backslash (e.g. D:\images\ and not D:\images)

102 CHAPTER 2. HOTINT USER MANUAL

e Choose the desired image file format (JPEG, BMP, or PNG)
e (Click "Run animation” in the data manager
e Image files are now stored in the specified folder

e Use VideoMach, VirtualDub or comparable software to create a video from the single video
frames

Additional hints:

e For video frames export, it is recommended to turn off any screen-saver, start your simulation
(or load it from the database) and do not touch it until it has been finished.

e Usually it is preferable to run the simulation first and then use the stored data for the export
of images. The whole procedure normally takes a several minutes, which, of course, depends
on the complexity of the scene (e.g. number of elements) and the number of video frames.

e Clicking on the button left from the video—camera button lets you store single images into
the directory specified above (see also subsection [2.3.4]).

e If you are using Windows 7 you have to switch off “aero-design".

2.8. HOTINT FILE AND FOLDER STRUCTURE 103

2.8 HOTINT File and Folder Structure

In this chapter, the file structure for saving multibody system models is described. The multi-
body system can be defined in an editable (“.hid”) format which allows the editing and creation
of such files manually or automatically with external programs. However, one needs to be
cautious when creating such files, because errors might lead to unexpected results!

The best way to get to know the file structure is to open an existing example file. Details on
the HOTINT script language used in those files are provided in section [2.4.2.1

2.8.1 Input Files

The new version of a text-file containing script language is called Hotint Input Data file - with
file extension (“.hid”). The file can be opened via the menu with "Open MBS”. The filename is
then stored in the variable

“GeneralOptions.ModelFile.hotint _data_filename”. Using the button "Reload MBS” it is pos-
sible to open this model again, which allows the user to edit the model in an editor and check
the correct implementation with just one click. Alternatively, the Hotint Input Data file can
be committed to “hotint.exe” by the drag & drop function of the mouse. If the filetype (“.hid”)
is linked with the application “hotint.exe”, the Hotint Input Data file can be opened also by
doubleclick of the mouse. A third variant to commit the Hotint Input Data file to HOTINT is
to commit the Hotint Input Data file in the DOS-command line e.g. “hotint.exe filename.hid”.
In all three cases, the directory and filename is stored in the previously described Hotint Opti-
ond] The input file has to contain the variable "THOTINT data_file version” before the first
command. HOTINT uses this variable to check, if the (old) input file still can be used with
the current (new) version of HOTINT.

2.8.2 Folder Structure

The paths are collected in the Options “GeneralOptions.Paths”. Most of them are located in
the dialog “Edit Hotint Options”™

e Application path: path of the application (“hotint.exe”).

e Record frames path: path for storage of single frames for creating animations (modify in
dialog “Video frames recording/Path to the image”).

e Hotint input data path: path of the Hotint Data Input file (“.hid”).

e Sensor output path: path of the solution files from sensors (in dialog “Edit Solver Options”).

'Note: the Include-command of the script language searches a file with absolute paths and afterwards relative
to the previously described path of the Hotint Data Input file.

104 CHAPTER 2. HOTINT USER MANUAL

Chapter 3

HOTINT Reference Manual

3.1 Preface

In this reference manual all available objects and options are described.

3.1.1 Examples

If there is provided a short example for an object, keep in mind that the examples may not
have any physical meaning. The examples just show how to add the object to the system.

3.1.2 Data objects

The description of each object contains a table called Data objects. These are the variables,
that can be changed in the GUI or set in the script language. Variables marked with R are
readonly and can not be changed by the user.

3.1.3 Observable FieldVariables

If an object provides field variables, they are listed in the documentation of the object. How
to measure these variables with a F'VElementSensor is described in section [3.9.1]

3.1.4 Observable special values

If an object provides special (internal) values, they are listed in the documentation of the object.
How to measure these variables with a ElementSensor is described in section [3.9.2

3.1.5 Controllable special values

If an object provides special (internal) values, that can be changed during runtime, they are
listed in the documentation of the object. How to change these variables with a IOElementDa-
taModifier is described in section B.4.16]

105

106 CHAPTER 3. HOTINT REFERENCE MANUAL

3.2 Element

These elements are available:

e MasslD, |3.2.1

e RotorlD, [3.2.2

e Mass2D, (3.2.3

e Rigid2D, [3.2.4

e Mass3D, [3.2.5]

e NodalDiskMass3D, [3.2.6]

e Rigid3D, B.27]

e Rigid3DKardan,

e Rigid3DMinCoord,

e LinearBeam3D,

e RotorBeamXAxis, |3.2.11

o ANCFBeamShear3DLinear,
e ANCFBeamShear3DQuadratic, [3.2.13

e ANCFBeam3DTorsion, [3.2.14

e Hexahedral, 3.2.15
e Tetrahedral, |3.2.16
e Prism, |3.2.17|

e Pyramid, [3.2.18

Note:

In HOTINT several classes are treated as ’elements’. Connectors and control elements are also
‘elements’, and can therefore be edited and deleted in the GUI with the menu items of the
elements.

In the script language the command AddElement is just available for the elements in the list
above, but not for connectors or control elements.

3.2.1 MasslD
Short description

A point mass in one dimensions with 1 position coordinate. The computation of the dynamics
of the point mass is extremely simple. The Mass1D can be used for a lot of applications which
can be represented by the same type of equations. If you interpret the 'mass’ to be 'moment
of inertia’ and the 'position’ to be ’angle’, then you can realize a 1D rotatory element as well.

3.2. ELEMENT 107

Degrees of freedom

1 degree of freedom: the position in x-direction

Geometry

The global position pg, of a local point p is computed as

T

Pglob = Do + A 0 | +p (3.1)
0

with the reference position py and the rotation matrix A.

Equations

with the mass m and the force F.

Limitations

The mass has no rotations, thus external moments can not be applied. The transformation of
local to global coordinates is based on a translation, e.g. the global mass position is added to
the local coordinates.

HOTINT - Multibody simulation code
View Ed:c Add Object System Computaton Heauls 1
{"Ziaiil) Save corfigurabon) Ascent Fie B Dy s Fyafi 28 2 @

HOTINT

time= 0s

Figure 3.1: Mass1D

Data objects of Mass1D:

| Data name | type | R | default description

108 CHAPTER 3. HOTINT REFERENCE MANUAL

element _type string "Mass1D" specification of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "Mass1D" name of the element

element number integer 1 number of the element in the mbs

loads vector (] Set loads attached to this element: ’nr_loadl,
nr_load2, ... or empty

Graphics

Graphics.RGB __color vector [0.1, 0.1, 0.8] [red, green, blue] color of element, range = 0..1,
use default color:[-1,-1,-1]

Graphics.geom elements | vector [l Set Geometric elements to represent body ’geo-
meleml, geomelem2, ...” or empty

Graphics. bool 0 Graphical representation of element with geom-

use_alternative shape objects that are attached to the element

Graphics.show _element bool 1 Flag to draw element

Graphics.drawing tiling integer 8 tiling of circle/sphere to represent Mass1D; the
drawing_tiling should be set small in order to
improve efficiency, but large for nice graphical re-
presenations

Graphics.radius double 0.1 drawing radius of mass

Graphics. vector [0, 0, 0] Reference point for transformation of 1D objects

reference position to 3D; p = [X, Y, Z]

Graphics.rotation _matrix | matrix [1, 0, 0; 0, 1, O;

0,0, 1] Rotation matrix for transformation of 1D objects

to 3D

Initialization

Initialization. vector [0] initial values for position [x]

initial _position

Initialization. vector [0] initial values for velocity [v]

initial velocity

Physics

| Physics.mass | double | 0 total mass of point mass

Observable FieldVariables:

The following values can be measured with a FieldVariableElementSensor, [3.9.1] The sensor
needs 2 informations: the field variable itself and the component. For more information see

section B.1]

’ field variable

possible components

position x, magnitude
displacement x, magnitude
velocity x, magnitude
acceleration x, magnitude

Observable special values:

For more information see section B.1]

] value name

\ description

3.2. ELEMENT 109

Internal. DOF degrees of freedom (or generalized unknowns) of the
element. range: 1-2

Internal.second order variable second order variables of the element. range: 1-1

Internal.second order variable velocity velocities of second order variables of the element.
range: 1-1

Suitable Connectors:

The following connectors can be used to constrain the element:
CoordinateConstraint, VelocityCoordinateConstraint, [3.3.3, MultiCoordConstraint, [3.3.4]

FrictionConstraint, Contact1D, PlaneConstraint, [3.3.10}

Example

see file Massl1D.txt

force

{
load_type = "GCLoad"
load_value= 1

}
nLoad=AddLoad (force)

Elementi

{
element_type= "MassiD"

loads= [nLoad]
Physics.mass= 1

}
nElement = AddElement (Element1)

Senspos
{
sensor_type= "FVElementSensor"
element_number= nElement
field_variable= '"position"
component= "x"

}

AddSensor (senspos)

3.2.2 RotorlD

Short description

A rotor with 1 degree of freedom (the rotation). Mathematically implemented like Mass1D but
different geometric representation.

Degrees of freedom

1 degree of freedom: the rotation

110

Geometry

The global position pg of a local point p is computed as

CHAPTER 3. HOTINT REFERENCE MANUAL

Pglob = Do + Ao Ap

(3.3)

with the reference position pg, the constant rotation matrix Ay and the non-constant rotation

matrix

Equations

1 0
=1 0 cosy
0 singp

Ip=M

with the moment of inertia I and the torque M.

Z0

(3.4)

(3.5)

Figure 3.2: RotorlD is represented as rotating disc.

Data objects of Rotorl1D:

| Data name | type | R | default description |

element type string "RotorlD" specification of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "Rotor1D" name of the element

element _number integer R 1 number of the element in the mbs

loads vector (] Set loads attached to this element: ’nr_loadl,
nr_load2, ...” or empty

Graphics

3.2. ELEMENT

111

Graphics.RGB _ color vector

[0.1, 0.1, 0.8] [red, green, blue] color of element, range = 0..1,

use default color:[-1,-1,-1]

Graphics.geom elements | vector

|

Set Geometric elements to represent body ’geo-
melem1, geomelem2, ...” or empty

Graphics. bool 0 Graphical representation of element with geom-
use _alternative shape objects that are attached to the element
Graphics.show _element bool 1 Flag to draw element
Graphics. vector [0, 0, 0] Reference point for transformation of 1D objects
reference_position to3D; p = [X, Y, Z]
Graphics.rotation _matrix | matrix [1, 0, 0; 0, 1, O;
0,0, 1] Rotation matrix for transformation of 1D objects
to 3D
Graphics.radius double 0.1 radius of rotor
Graphics.length double 0.2 length of rotor
Initialization
Initialization. vector [0] initial value for rotation
initial rotation
Initialization. vector [0] initial value for angular velocity
initial angular_velocity
Physics
Physics. double 0 mass moment of inertia in kg*m*m

moment__of _inertia

Observable FieldVariables:

The following values can be measured with a FieldVariableElementSensor, [3.9.1] The sensor
needs 2 informations: the field variable itself and the component. For more information see

section B.1]

| field_variable

possible components

bryant _angle

X, magnitude

angular _velocity

x, magnitude

angular _acceleration

x, magnitude

Observable special values:

For more information see section B.1]

value name

description

Internal. DOF

degrees of freedom (or generalized unknowns) of the
element. range: 1-2

Internal.second order variable

second order variables of the element. range: 1-1

Internal.second order variable velocity

velocities of second order variables of the element.
range: 1-1

112 CHAPTER 3. HOTINT REFERENCE MANUAL

Suitable Connectors:

The following connectors can be used to constrain the element:
CoordinateConstraint, VelocityCoordinateConstraint, [3.3.3, MultiCoordConstraint, [3.3.4]

FrictionConstraint, Contact1D, PlaneConstraint, [3.3.10]

Example

see file RotorlD.txt

force

{
load_type = "GCLoad"
load_value= 1

}
nLoad=AddLoad (force)

Element1

{
element_type= "RotorilD"
loads= [nLoad]
Physics.moment_of_inertia= 1

}
nElement = AddElement (Element1)

Senspos

{
sensor_type= "FVElementSensor"
element_number= nElement
field_variable= "bryant_angle"
component= "x"

3

AddSensor (senspos)

3.2.3 Mass2D
Short description

A point mass in two dimensions with 2 position coordinates. The computation of the dynamics
of the point mass is extremely simple, thus the Mass2D can be used for many body simulations
(e.g. particles).

Degrees of freedom

2 degrees of freedom: the position in 2 coordinates

Equations

3.2. ELEMENT

Limitations

113

The mass has no rotations, thus external moments can not be applied. The transformation of
local to global coordinates is based on a translation, i.e., the global mass position is added to

the local coordinates.

HOTINT - Multibody simulation code
Ele Yew Edt AddObject System Computaton Heauls

"} Sove corfigurabon| Recen Fie

HOTINT

time=

s

Data objects of Mass2D:

Figure 3.3: Mass2D

’ Data name ‘ type ‘ R ‘ default description

element_type string "Mass2D" specification of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "Mass2D" name of the element

element number integer R |1 number of the element in the mbs

loads vector (] Set loads attached to this element: ’nr_loadl,
nr_load2, ... or empty

Graphics

Graphics.RGB _color vector [0.1, 0.1, 0.8] [red, green, blue] color of element, range = 0..1,
use default color:[-1,-1,-1]

Graphics.geom elements | vector [] Set Geometric elements to represent body ’geo-
meleml, geomelem2, ...” or empty

Graphics. bool 0 Graphical representation of element with geom-

use_alternative shape objects that are attached to the element

Graphics.show _element bool 1 Flag to draw element

Graphics. vector [0, 0, O] Reference point for transformation of planar ob-

reference_position jects to 3D; p = [X, Y, Z]

Graphics.rotation _matrix | matrix [1, 0, 0; 0, 1, O;

0,0, 1] Rotation matrix for transformation of planar ob-

jects to 3D

Graphics.drawing_tiling integer 8 tiling of circle/sphere to represent Mass2D; the
drawing _tiling should be set small in order to
improve efficiency, but large for nice graphical re-
presentations

114 CHAPTER 3. HOTINT REFERENCE MANUAL
\ Graphics.radius \ double \ \ 0.1 drawing radius of mass

Initialization

Initialization. vector [0, 0] initial values for position [x,y]

initial position

Initialization. vector [0, 0] initial values for velocity [vx,vy]

initial _velocity

Physics
| Physics.mass | double | | 0 total mass of point mass

Observable FieldVariables:

The following values can be measured with a FieldVariableElementSensor, [3.9.1

section B.1]

| field_variable

possible components

position X, y, magnitude
displacement, X, y, magnitude
velocity X, y, magnitude
velocity local basis X, y, magnitude
acceleration X, y, magnitude

The sensor
needs 2 informations: the field variable itself and the component. For more information see

Observable special values:

For more information see section B.1]

description

degrees of freedom (or generalized unknowns) of the
element. range: 1-4

second order variables of the element. range: 1-2
velocities of second order variables of the element.
range: 1-2

volume of an element

potential (strain) energy of an element

kinetic energy of an element

value name
Internal. DOF

Internal.second order variable
Internal.second order variable velocity

Internal.volume
Internal.potential energy
Internal kinetic _energy

Suitable Connectors:

The following connectors can be used to constrain the element:
CoordinateConstraint, VelocityCoordinateConstraint, [3.3.3) MultiCoordConstraint, [3.3.4]
FrictionConstraint, Contact1D, PlaneConstraint, [3.3.10, SpringDamperActuator2D,

3-3.:20}, PointJoint2D, [3.3.21]

Example

see file mass2D.txt

3.2. ELEMENT 115

Loadl

{
load_type= "GCLoad" % generalized force (here: actual force)
generalized_coordinate= 2 % corresponding generalized coordinate

% (here: y-direction)
load_value= -0.02

¥
nLoad = AddLoad(Loadl)

Element1

{
element_type= "Mass2D"
loads= [nLoad]
Initialization.initial_position= [0, 1]
Physics.mass= 1

}
nElement = AddElement (Elementl)

Sensoril

{
name= "global y-position"
sensor_type= "FVElementSensor"
element_number= nElement
field_variable= '"position"
component= "y"

}
AddSensor(Sensorl)

3.2.4 Rigid2D
Short description

A rigid body in 2D.

Degrees of freedom

The first 2 degrees of freedom are those describing the position in the xy-plane. The rotation
around the local z-axis is parameterized with the third degree of freedom.

Geometry

The center of gravity, S, is defined by the vector initial position, which is in global coordinates.
The rotation of the body-fixed local coordinate system w.r.t. the global coordiante system is
defined by the variable initial rotation.

In order to define the position of a point P of the element, e.g. for connectors or sensors, the
local coordinate system is used. The reference point is the center of mass, S, so the values of
the local coordinates can be positive or negative.

116

CHAPTER 3.

HOTINT REFERENCE MANUAL

Data objects of Rigid2D:

Figure 3.4: Rigid2D

| Data name | type | R | default description

element type string "Rigid2D" specification of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "Rigid2D" name of the element

element number integer R 1 number of the element in the mbs

loads vector (] Set loads attached to this element: ’nr_loadl,
nr_load2, ...” or empty

Graphics

Graphics.RGB _ color vector [0.1, 0.1, 0.8] [red, green, blue| color of element, range = 0..1,
use default color:[-1,-1,-1]

Graphics.geom elements | vector (] Set Geometric elements to represent body ’geo-
meleml, geomelem2, ...” or empty

Graphics. bool 0 Graphical representation of element with geom-

use _alternative shape objects that are attached to the element

Graphics.show _element bool 1 Flag to draw element

Graphics. vector [0, 0, 0] Reference point for transformation of planar ob-

reference_ position jects to 3D; p = [X, Y, Z]

Graphics.rotation _matrix | matrix [1, 0, 0; 0, 1, O;

0,0, 1] Rotation matrix for transformation of planar ob-

jects to 3D

Graphics. vector [0.1, 0.1, 0.01]

body _dimensions Dimensions of a regular cube [L_x, L _y, (L_2z)]

Physics

Physics. double 1.67e-007 [I_Z7Z]

moment of inertia

Physics.mass double 0.0001 mass of the body in kg

Initialization

Initialization. vector [0, 0] X, Y]

initial position

Initialization. vector [0, 0] [vX, vY]

initial _velocity

Initialization. vector [0] rotation in rad

initial rotation

3.2. ELEMENT 117

Initialization. vector [0] Angular velocity in rad/s
initial angular velocity

Observable FieldVariables:

The following values can be measured with a FieldVariableElementSensor, [3.9.1l The sensor
needs 2 informations: the field variable itself and the component. For more information see

section B.1]

] field variable possible components

position X, y, magnitude
displacement, X, y, magnitude
velocity X, y, magnitude
velocity local basis X, y, magnitude
bryant _angle x, magnitude

angular velocity x, magnitude

acceleration X, y, magnitude

Observable special values:

For more information see section [B.1]

value name description

Internal. DOF degrees of freedom (or generalized unknowns) of the
element. range: 1-6

Internal.second order variable second order variables of the element. range: 1-3

Internal.second order variable velocity velocities of second order variables of the element.
range: 1-3

Internal.volume volume of an element

Internal.potential _energy potential (strain) energy of an element

Internal.kinetic__energy kinetic energy of an element

Suitable Connectors:

The following connectors can be used to constrain the element:
CoordinateConstraint, VelocityCoordinateConstraint, |3.3.3] MultiCoordConstraint, |3.3.4}
FrictionConstraint, Contact1D, PlaneConstraint, [3.3.10, SpringDamperActuator2D,

3-3.:20}, PointJoint2D, [3.3.21]

Example

see file Rigid2D.txt
L_x 0.10 % length

L_y = 0.20 % width
L_z = 0.01 % height (for drawing and computation of mass)

118

density= 7850

myRigid2D % add rigid body

name= "my first two-dimensional rigid body"
[L_x, L_y, O]

moment_of_inertia= 1.0/12.0*mass*(L_x"2+L_y"~2)

CHAPTER 3. HOTINT REFERENCE MANUAL

KX, Y]
% rotl_Z in rad
%X, Y]

initial_angular_velocity= [pi*0.5] %rad/s

{
element_type= "Rigid2D"
Graphics.body_dimensions =
Physics
{
mass= density*L_x*xL_y*L_z
}
Initialization
{
initial_position= [0, O]
initial_rotation= [0.0]
initial_velocity= [0, 0]
}
b

nElement = AddElement (myRigid2D)

3.2.5 Mass3D
Short description

%specification of element type.
%name of the element

A point mass in three dimensions with 3 position coordinates. The computation of the dynamics
of the point mass is extremely simple, thus the Mass3D can be used for many body simulations

(e.g. particles).

Degrees of freedom

3 degrees of freedom: the position in 3 coordinates

Limitations

The mass has no rotations, thus external moments can not be applied. The transformation of
local to global coordinates is based on a translation, e.g. the global mass position is added to

the local coordinates.

Data objects of Mass3D:

| Data name | type | R | default description

element type string "Mass3D" specification of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "Mass3D" name of the element

element _number integer R 1 number of the element in the mbs

loads vector (] Set loads attached to this element: ’nr_loadl,
nr_load2, ...” or empty

Graphics

Graphics.RGB _ color vector [0.1, 0.1, 0.8] [red, green, blue| color of element, range = 0..1,
use default color:[-1,-1,-1]

3.2. ELEMENT

119

Graphics.geom elements | vector [] Set Geometric elements to represent body ’geo-
meleml, geomelem2, ...” or empty

Graphics. bool 0 Graphical representation of element with geom-
use_alternative shape objects that are attached to the element
Graphics.show _element bool 1 Flag to draw element
Graphics.drawing tiling integer 6 tiling of circle/sphere to represent Sphere
Graphics.radius double 0.1 drawing radius of mass
Initialization
Initialization. vector [0, 0, 0] coordinates for initial position of mass [X Y Z]
initial position
Initialization. vector [0, 0, O] coordinates for initial velocity of mass [X Y Z]
initial velocity
Physics

| Physics.mass | double | | 0 total mass of point mass

The following values can be measured with a FieldVariableElementSensor, [3.9.1

Observable FieldVariables:

The sensor

needs 2 informations: the field variable itself and the component. For more information see
section [3.1]

’ field variable

possible components

position X, y, z, magnitude
displacement, X, y, z, magnitude
velocity X, y, z, magnitude
acceleration X, y, z, magnitude
Observable special values:
For more information see section [3.1]
value name description

Internal. DOF

degrees of freedom (or generalized unknowns) of the
element. range: 1-6

Internal.second order variable

second order variables of the element. range: 1-3

Internal.second order variable velocity

velocities of second order variables of the element.
range: 1-3

Internal.volume

volume of an element

Internal.potential energy

potential (strain) energy of an element

Internal kinetic _energy

kinetic energy of an element

Suitable Connectors:

The following connectors can be used to constrain the element:

PointJoint, CoordinateConstraint, VelocityCoordinateConstraint, [3.3.3] Multi-
CoordConstraint, [3.3.4] SlidingPointJoint, Rope3D, [3.3.7] FrictionConstraint, Con-
tact1D, [3.3.9, PlaneConstraint, [3.3.10, SpringDamperActuator, [3.3.17, RigidLink, [3.3.18]

120 CHAPTER 3. HOTINT REFERENCE MANUAL

Example

see file AddElement.txt

emptyMass3D

{
element_type = "Mass3D"
Physics.mass= 1

}
nElement = AddElement (emptyMass3D)

3.2.6 NodalDiskMass3D
Short description

This is a disk mass for the purpose of rotordynamics applications and should be used together
with the RotorBeamXAxis element.

Nodes

The DOF of the disk element are stored in a node. To create a new disk element the user has
to define a 'Node3DR123’ node. This node type has 6 DOF. The first 3 DOF describe the node
displacement (x,y, z) w.r.t local rotor element coordinate system, the last 3 DOF are angles of
rotation (¢, ¢y, ¢,) w.r.t local rotor element coordinate system. The rotation about the local
x-axis is considered as large, the rotations about the local y and z-axes are considered as small
(linearized angles).

Figure 3.5: NodalDiskMass3D

Data objects of NodalDiskMass3D:

‘ Data name ‘ type ‘ R ‘ default description

element _type string "NodalDiskMass3D"

specification of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "NodalDiskMass3D"
name of the element

element number integer R 1 number of the element in the mbs

loads vector (] Set loads attached to this element: ’nr_loadl,
nr_load2, ...” or empty

Graphics

3.2. ELEMENT

121

Graphics.RGB __color vector [0.1, 0.1, 0.8] [red, green, blue] color of element, range = 0..1,
use default color:[-1,-1,-1]

Graphics.geom elements | vector (] Set Geometric elements to represent body ’geo-
melem1, geomelem2, ...” or empty

Graphics. bool 0 Graphical representation of element with geom-

use _alternative shape objects that are attached to the element

Graphics.show _element bool 1 Flag to draw element

Graphics.drawing_tiling integer 6 tiling of circle/sphere to represent Sphere

Graphics.thickness double 0.1 drawing thickness of disk mass

Graphics.radius double 0 drawing radius of disk mass

Physics

Physics. bool 1 set to 1 if influence of tilted mass should be con-

full _mass _matrix sidered in the mass matrix

Physics. vector [1, 1, 1] moments of inertia of the disk

moment of inertia

Physics.mass double 0 total mass of disk

node number integer 1 node number to which the mass refers

Observable FieldVariables:

The following values can be measured with a FieldVariableElementSensor, [3.9.1] The sensor
needs 2 informations: the field variable itself and the component. For more information see

section B.1]

’ field variable

possible components

position X, ¥, z, magnitude
velocity X, y, z, magnitude
velocity local basis X, ¥, z, magnitude
acceleration X, y, z, magnitude
angular _velocity X, ¥, z, magnitude
angular _acceleration X, y, z, magnitude
Observable special values:
For more information see section [B.1]
value name description

Internal. DOF

degrees of freedom (or generalized unknowns) of the
element. range: 1-12

Internal.second order variable

second order variables of the element. range: 1-6

Internal.second order variable velocity

velocities of second order variables of the element.
range: 1-6

Internal.volume

volume of an element

Internal.potential _energy

potential (strain) energy of an element

Internal.kinetic__energy

kinet

ic energy of an element

122 CHAPTER 3. HOTINT REFERENCE MANUAL

Suitable Connectors:

The following connectors can be used to constrain the element:

PointJoint, CoordinateConstraint, VelocityCoordinateConstraint, [3.3.3] Multi-
CoordConstraint, Rope3D, [3.3.7], FrictionConstraint, Contact1D, [3.3.9] Plane-
Constraint, [3.3.10, GenericBodyJoint, [3.3.11] RevoluteJoint, [3.3.12] PrismaticJoint, [3.3.13

RigidJoint, [3.3.15] CylindricalJoint, [3.3.16] SpringDamperActuator, [3.3.17, RigidLink, [3.3.18
RotatorySpringDamperActuator, |3.3.19

Example

see file NodalDiskMass3D.txt

% define a node

node

{
node_type = "Node3DR123"
Geometry

{
reference_position = [0
reference_rot_angles =

}

,0,01]
[0,0,0]
}
n = AddNode (node)
disk
{

element_type= "NodalDiskMass3D"

Graphics.radius= 0.2 Y%radius

Physics

{

moment_of_inertia= [1, 1, 1] Ymoments of inertia

mass= 1 Ytotal mass

3

node_number= n %node number to which the mass refers

}
nDisk = AddElement (disk)

3.2.7 Rigid3D
Short description
A rigid body in 3D.

Degrees of freedom

The first 3 degrees of freedom are those describing the position. The rotation is parameterized
with 4 degrees of freedom and one additional algebraic equation.

3.2. ELEMENT 123

Geometry

The center of gravity, S, is defined by the vector initial position, which is in global coordi-
nates, see figure The rotation of the body-fixed local coordinate system w.r.t. the global
coordiante system is defined by the Matrix initial rotation.

In order to define the position of a point P of the element, e.g. for connectors or sensors, the
local coordinate system is used. The reference point is the center of mass, S, so the values of
the local coordinates can be positive or negative.

Figure 3.6: Rigid3D

Figure 3.7: local and global coordinate system for a Rigid3D

Data objects of Rigid3D:
] Data name \ type \ R \ default description ‘

element type string "Rigid3D" specification of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

124 CHAPTER 3. HOTINT REFERENCE MANUAL

name string "Rigid3D" name of the element

element number integer R |1 number of the element in the mbs

loads vector (] Set loads attached to this element: ’nr_loadl,
nr_load2, ... or empty

Graphics

Graphics.RGB _ color vector [0.1, 0.1, 0.8] [red, green, blue| color of element, range = 0..1,
use default color:[-1,-1,-1]

Graphics.geom elements | vector [] Set Geometric elements to represent body ’geo-
melem1, geomelem2, ...’ or empty

Graphics. bool 0 Graphical representation of element with geom-

use_alternative shape objects that are attached to the element

Graphics.show _element bool 1 Flag to draw element

Graphics. vector [1, 1, 1] Dimensions of a regular cube [L_x, L_y, L _z]in

body dimensions m

Physics

Physics. matrix [0.167, 0, 0; O,

moment__of inertia 0.167, 0; 0, 0, [I_XX,JI XY,I XZ;..]

0.167]

Physics.volume double 1 volume of the body in m*m*m

Physics.mass double 1 mass of the body in kg

Initialization

Initialization. vector [0, 0, 0] X,Y, Z]

initial _position

Initialization. vector [0, 0, 0] X,Y, Z]

initial velocity

Initialization. vector [0, 0, 0] 3 consecutive rotations (global rotation axes):

initial rotation [rot3 X, rot2 Y, rotl 7] in rad

Initialization. vector [0, 0, O] Angular velocity vector in global coordinates:

initial angular velocity

[ang X, ang Y, ang Z] in rad/s

Observable FieldVariables:

The following values can be measured with a FieldVariableElementSensor, [3.9.1] The sensor
needs 2 informations: the field variable itself and the component. For more information see

section B.1]

| field_variable

possible components

position X, y, z, magnitude
displacement, X, y, z, magnitude
velocity X, y, z, magnitude
velocity local basis X, y, z, magnitude
bryant _angle X, y, z, magnitude
angular _velocity X, ¥, z, magnitude
angular velocity local basis X, y, z, magnitude
acceleration X, ¥, z, magnitude

Observable special values:

For more information see section B.1]

3.2. ELEMENT

125

value name

description

Internal. DOF

degrees of freedom (or generalized unknowns) of the
element. range: 1-15

Internal.second order variable

second order variables of the element. range: 1-7

Internal.second order variable velocity

velocities of second order variables of the element.
range: 1-7

Internal.algebraic_variable

algebraic variables of the element. range: 1-1

Internal.volume

volume of an element

Internal.potential _energy

potential (strain) energy of an element

Internal.kinetic__energy

kinetic energy of an element

Suitable Connectors:

The following connectors can be used to constrain the element:

PointJoint, CoordinateConstraint, VelocityCoordinateConstraint, [3.3.3] Multi-
CoordConstraint, SlidingPointJoint, [3.3.5] SlidingPrismaticJoint, [3.3.6] Rope3D,
FrictionConstraint, Contact1D, PlaneConstraint, GenericBodyJoint,
RevoluteJoint, PrismaticJoint, [3.3.13] UniversalJoint, RigidJoint, Cylin-
dricalJoint, [3.3.16] SpringDamperActuator, RigidLink, RotatorySpringDampe-

rActuator, [3.3.19]

Example

see file Rigid3D.txt

dimension = [1, 0.1, 0.1] %Dimensions of a regular cube [L_x, L.y, L_z] in m

my_data J compute inertia values

{
density = 7850

Cube.body_dimensions = dimension

3

inertia_values = Computelnertia(my_data)

myRigid % add rigid body
{

element_type= "Rigid3D" Y%specification of element type.
name= "my first rigid" Yname of the element

Graphics.body_dimensions= dimension

Physics
{

moment_of_inertia= inertia_values.moment_of_inertia

volume= inertia_values.volume
mass= inertia_values.mass

Initialization

{

initial_position= [0, 0, 0] %X, Y, Z]
%[rot3_X, rot2_Y, rot1_Z] in rad

initial_rotation= [0, pi/2, 0]
}

126 CHAPTER 3. HOTINT REFERENCE MANUAL

nElement = AddElement (myRigid)

3.2.8 Rigid3DKardan

Short description
A rigid body in 3D, implemented with bryant angles (also called Tait Bryan or Cardan angles).

Degrees of freedom

The first 3 degrees of freedom are those describing the position. The rotation is parameterized
with 3 bryant angles with the sequence x-y-z. If you use this element for dynamic simulation
of a fast rotating rigid body, it is adviced to use the global x-axis as rotation axis.

Geometry

The center of gravity, S, is defined by the vector initial position, which is in global coordi-
nates, see figure [3.71 The rotation of the body-fixed local coordinate system w.r.t. the global
coordiante system is defined by the Matrix initial rotation.

In order to define the position of a point P of the element, e.g. for connectors or sensors, the
local coordinate system is used. The reference point is the center of mass, S, so the values of
the local coordinates can be positive or negative.

Figure 3.8: Rigid3DKardan

Data objects of Rigid3DKardan:
| Data name | type | R | default description |

element type string "Rigid3DKardan" specification of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "Rigid3DKardan" name of the element

element number integer R 1 number of the element in the mbs

3.2. ELEMENT

127

loads vector (] Set loads attached to this element: ’nr_loadl,
nr_load2, ... or empty

Graphics

Graphics.RGB _color vector [0.1, 0.1, 0.8] [red, green, blue] color of element, range = 0..1,
use default color:[-1,-1,-1]

Graphics.geom elements | vector [] Set Geometric elements to represent body ’geo-
meleml, geomelem2, ...” or empty

Graphics. bool 0 Graphical representation of element with geom-

use_alternative shape objects that are attached to the element

Graphics.show _element bool 1 Flag to draw element

Graphics. vector [1, 1, 1] Dimensions of a regular cube [L_x, L_y,L_z]in

body dimensions m

Physics

Physics. matrix [0.167, 0, 0; O,

moment__of inertia 0.167, 0; 0, 0, [I_XX,JI XY,I XZ;..]

0.167]

Physics.volume double 1 volume of the body in m*m*m

Physics.mass double 1 mass of the body in kg

Physics. string "xyz" rotations sequence, can be xyz, zxy Or zxz

rotations sequence

Initialization

Initialization. vector [0, 0, 0] X,Y, Z]

initial position

Initialization. vector [0, 0, O] X,Y, Z]

initial _velocity

Initialization. vector [0, 0, 0] 3 consecutive rotations (global rotation axes):

initial rotation [rot3 X, rot2_ Y, rotl Z]in rad

Initialization. vector [0, 0, 0] Angular velocity vector in global coordinates:

initial angular_velocity

[ang_X, ang_ Y, ang_Z] in rad/s

Observable FieldVariables:

The following values can be measured with a FieldVariableElementSensor, [3.9.1] The sensor
needs 2 informations: the field variable itself and the component. For more information see

section B.1]

’ field variable

possible components

position X, y, z, magnitude
displacement, X, y, z, magnitude
velocity X, ¥, z, magnitude

velocity local basis

%Y

7z, magnitude

bryant angle X, ¥, z, magnitude
angular _velocity X, y, z, magnitude
angular velocity local basis X, ¥, z, magnitude
acceleration X, y, z, magnitude

Observable special values:

For more information see section B.1]

128 CHAPTER 3. HOTINT REFERENCE MANUAL

value name description

Internal. DOF degrees of freedom (or generalized unknowns) of the
element. range: 1-12

Internal.second order variable second order variables of the element. range: 1-6

Internal.second order variable velocity velocities of second order variables of the element.
range: 1-6

Internal.volume volume of an element

Internal.potential energy potential (strain) energy of an element

Internal kinetic _energy kinetic energy of an element

Suitable Connectors:

The following connectors can be used to constrain the element:
PointJoint, CoordinateConstraint, [3.3.2) VelocityCoordinateConstraint, [3.3.3] Multi-

CoordConstraint, SlidingPointJoint, [3.3.5] SlidingPrismaticJoint, [3.3.6] Rope3D,
FrictionConstraint, Contact1D, PlaneConstraint, GenericBodyJoint,
RevolutelJoint, PrismaticJoint, [3.3.13 UniversalJoint, RigidJoint, Cylin-
dricalJoint, [3.3.16] SpringDamperActuator, RigidLink, RotatorySpringDampe-
rActuator,

Example

see file Rigid3DKardan.txt

dimension = [1, 0.1, 0.1] %Dimensions of a regular cube [L_x, L.y, L_z] in m

my_data % compute inertia values

{
density = 7850
Cube.body_dimensions = dimension

}

inertia_values = Computelnertia(my_data)

myRigid % add rigid body
{
element_type= "Rigid3DKardan" Yspecification of element type.
name= "my first rigid with kardan angles" Jname of the element
Graphics.body_dimensions= dimension
Physics
{
moment_of_inertia= inertia_values.moment_of_inertia
volume= inertia_values.volume
mass= inertia_values.mass
}
Initialization
{
initial_position= [0, 0, 0] #[X, Y, Z]
initial_rotation= [0, pi/2, 0] %[rot3_X, rot2_Y, rotl_Z] in rad
}
}
nElement = AddElement (myRigid)

3.2. ELEMENT 129

3.2.9 Rigid3DMinCoord

Short description

A rigid body with just one degree of freedom. Efficient formulation for robotic applications are
possible with this body.

Degrees of freedom

The body just has 1 (own) degree of freedom (d.o.f.). Depending on the type of joint it is a
translational or rotational one, see figure [3.9] and figure [3.10] which rotates or translates with
respect to the i-th coordinate system around or along the Z-axis (additionally to the initial
parameters 6 and respectively d in figure . If you look at the i-th body in a chain of such
bodies, then the i-th body seems to have i d.o.f.s. In fact it also just adds 1 d.o.f. to the system.
If you are using connectors or loads which use a d.o.f. directly (e.g. GCLoad or Coordinate-
Constraint) you have to be carefull with the settings. In these cases the i-th d.o.f. of the i-th
body is the correct one.

Geometry

The reference frame of the body is defined with Denavit-Hartenberg parameters, see figure
3.11} and an (optional) additional rotation matrix. The local reference frame is shown with the
following colors: x in green, y in blue and z in red. See figure [3.9] and figure [3.10

Equations

The implementation is based on the so-called "Projection Equation’ by Bremer. For details see
[13].

Limitations

The first body of a chain of such Rigid3DMinCoord bodies has to be fixed to ground. It is not
possible yet to connect a robot built up with these elements to e.g. a Rigid3D.

The implementation of the translational degree of freedom is up to now just tested for the case,
that there is just one transl. d.o.f. and that this joint is the first one in the kinematic chain
(=fixed to ground).

Figure 3.9: Rigid3DMinCoord with rotational degree of freedom

130 CHAPTER 3. HOTINT REFERENCE MANUAL

Figure 3.10: Rigid3DMinCoord with translational degree of freedom

Figure 3.11: Definition of the geometry with Denavit Hartenberg parameters [14]

Data objects of Rigid3DMinCoord:

‘ Data name ‘ type ‘ R ‘ default description

element type string "Rigid3DMinCoord"

specification of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "Rigid3DMinCoord"
name of the element

element number integer R 1 number of the element in the mbs

loads vector (] Set loads attached to this element: ’nr loadl,
nr_load2, ...” or empty

Graphics

3.2. ELEMENT

131

Graphics.RGB __color vector [0.1, 0.1, 0.8] [red, green, blue] color of element, range = 0..1,
use default color:[-1,-1,-1]

Graphics.geom elements | vector (] Set Geometric elements to represent body ’geo-
melem1, geomelem2, ...” or empty

Graphics. bool 0 Graphical representation of element with geom-

use _alternative shape objects that are attached to the element

Graphics.show _element bool 1 Flag to draw element

Graphics.position offset vector [0, 0, 0] reference position, global vector to reference
frame of first body. Only different from zero for
first body!

Geometry

Geometry.prev__body integer 0 element number of previous body in chain

Geometry.link type integer 1 1...rotation of body i around origin of local body-
fixed frame (joint), 2...sliding joint

Geometry. vector [1, 0, 0] 1r12 vector from origin of local frame (= joint) to

next link position end of body. [XY Z] in first body fixed coordinate
system.

Geometry. vector [0, 0, O] Euler angles between global coordinate system

joint_local frame to first body or between next link rotation and
local coordinate system: 3 consecutive rotations
(local rotation axes): [rot3_X, rot2_Y, rotl_7Z]
in rad

Geometry. vector [0, 0, 1, O] Denavit-Hartenberg Parameters: [theta (rad), d

DH _parameters (m), a (m), alpha (rad)]

Physics

Physics.mass double 1 mass of the body in kg

Physics. vector [0.5, 0, 0] vector from link to center of gravity in local

center of gravity frame. Measured in first body fixed coordinate
system.

Physics. matrix [0, 0, 0; 0O,

moment of inertia

0.0833, 0; 0, 0, [I XX,I XY,I XZ; ...] w.r.t. center of gravity,

0.0833] defined in body fixed coordinate system.
Physics. double 0 additional relative inertia moment (e.g. inertia of
moment_of inertia_add drive at link side)
Initialization
Initialization. vector [0] in m or rad, depending on link _type
initial position
Initialization. vector [0] in m/s or rad/s, depending on link _type

initial _velocity

Observable FieldVariables:

The following values can be measured with a FieldVariableElementSensor, [3.9.1l The sensor
needs 2 informations: the field variable itself and the component. For more information see

section B.1]

| field_variable

possible components

position

XY

7z, magnitude

velocity

%Y

z, magnitude

velocity local basis

%Y

7z, magnitude

bryant angle

%Y

z, magnitude

angular _velocity

%Y

z, magnitude

angular velocity local basis

%Y

z, magnitude

132 CHAPTER 3. HOTINT REFERENCE MANUAL

Observable special values:

For more information see section

value name description

Internal. DOF degrees of freedom (or generalized unknowns) of the
element. range: 1-2

Internal.second order variable second order variables of the element. range: 1-1

Internal.second order variable velocity velocities of second order variables of the element.
range: 1-1

Internal.volume volume of an element

Internal.potential _energy potential (strain) energy of an element

Internal.kinetic__energy kinetic energy of an element

Suitable Connectors:

The following connectors can be used to constrain the element:
CoordinateConstraint, VelocityCoordinateConstraint, [3.3.3, MultiCoordConstraint, [3.3.4]

FrictionConstraint, Contact1D, PlaneConstraint, [3.3.10]

Example

see file Rigid3DMinCoordDoublePendulum.txt

grav.load_type= "Gravity"

grav.direction= 2 Yglobal direction of the gravity
grav.gravity_constant= -9.81 Juse negative sign if necessary
nLoad = AddLoad(grav)

pendulum
{
element_type= "Rigid3DMinCoord"
loads= [nLoad]
Geometry
{
prev_body= 0 % O is constraint to ground = first body in chain
link_type= 1 % 1...rotational degree of freedom
DH_parameters= [0, O, 1, 0] % Denavit-Hartenberg Parameters: [theta (rad), d (m), a (m), a
}
Physics
{
mass= 0.1 7% mass of the body in kg
center_of_gravity= [0.5, 0, 0] Yvector to center of gravity
moment_of_inertia= [0, 0, O
0, 0.008354166666666666, 0
0, 0, 0.008354166666666666] %[I XX,I XY,I XZ; ...]
}
}
AddElement (pendulum)

3.2. ELEMENT 133

% add second pendulum with same geometry and orientation to end of first pendulum
pendulum.Geometry.prev_body= 1 7 element number of previous body in chain
AddElement (pendulum)

3.2.10 LinearBeam3D

Short description

The Beam3D element is a three dimensional elastic beam element which is aligned along the lo-
cal x axis. It provides a decoupled calculation of bending in y and z direction, axial deformation
in x direction and torsion about the x axis. Shear deformation is not considered. The decoupled
calculation is a simplification of the real, nonlinear problem, but for small deformations the
results coincidence highly with the exact solution.

Degrees of freedom

Bending is described by 4 DOF, the number of DOF for axial deformation as well as torsion is
2. These 12 DOF are stored in two nodes i and j. The DOF vector of the LinearBeam3D read
as follows

q(Z) = [q(Z)a q(j)] = ['r(Z)a y(Z)a 2(1)7 gb:(;)7 sz(;), Qs,(;)a x(J)a y(J)7 Z(j)a ¢;(nj)7 ¢Z(/]), qsgj)]T (37)

Nodes

To create a new beam element the user has to define two 'Node3DRxyz” nodes i and j. Every
node of this type has 6 DOF. The first 3 DOF describe the node displacement (z,y,z) w.r.t
global coordinate system, the last 3 DOF are angles of rotation (¢, ¢, ¢.) w.r.t global coor-
dinate system. All angles are considered as small (linearized angles). The reference positions
of the nodes define the beam ends at initial configuration and so the length of the beam. The
beam orientation is defined due to reference rot angles of node i. The advantage of using nodes
with global DOF is the possibility to discretize a beam element into small beams easily without
needing complicated constraint conditions. The beam elements do not even have to be aligned
along a straight line. If using the same node number for the boundary point of the adjoint
beams, beam elements are constrained automatically, see figure |3.13

Geometry

test

Equations

test

Limitations

Shear deformation is not considered. The decoupled calculation is a simplification of the real,
nonlinear problem, but for small deformations the results coincidence highly with the exact
solution.

134

CHAPTER 3. HOTINT REFERENCE MANUAL

node j

node i
. pasition vector

position to node i
vector
to node i

Y0

Figure 3.12: LinearBeam3D - Geometry
My
n;
n,
Figure 3.13: LinearBeam3D - Nodes

Data objects of LinearBeam3D:

] Data name \ type \ R \ default description

element type string "LinearBeam3D" specification of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "LinearBeam3D" name of the element

element number integer R 1 number of the element in the mbs

loads vector (] Set loads attached to this element: ’nr loadl,
nr_load2, ... or empty

Graphics

Graphics.RGB _color vector [0.1, 0.1, 0.8] [red, green, blue] color of element, range = 0..1,
use default color:[-1,-1,-1]

Graphics.geom elements | vector (] Set Geometric elements to represent body ’geo-
meleml, geomelem2, ...’ or empty

Graphics. bool 0 Graphical representation of element with geom-

use _alternative shape objects that are attached to the element

Graphics.show _element bool 1 Flag to draw element

Geometry

Geometry.node 1 integer 1 number of Node 1

Geometry.node 2 integer 2 number of Node 2

Physics

3.2. ELEMENT

135

Physics. bool
axial _deformation

include effect of axial deformation

Physics.material number | integer

material number which contains the main mate-
rial properties of the beam

Observable FieldVariables:

The following values can be measured with a FieldVariableElementSensor, [3.9.1] The sensor
needs 2 informations: the field variable itself and the component. For more information see

section [B.1]

‘ field variable

possible components

position X, ¥, z, magnitude
displacement, X, y, z, magnitude
velocity X, y, z, magnitude

velocity local basis

X, ¥, z, magnitude

beam _torsion

beam force axial

beam force transversal y, 2

beam moment_torsional

beam moment bending y, Z

acceleration X, ¥, z, magnitude
bryant _angle X, y, z, magnitude
angular _velocity X, ¥, z, magnitude

angular velocity local basis

X, y, z, magnitude

stress

XX, Xy, Xz, VY, Yz, 2z, magnitude

stress_mises

Observable special values:

For more information see section B.1]

value name

description

Internal. DOF

degrees of freedom (or generalized unknowns) of the
element. range: 1-24

Internal.second order variable

second order variables of the element. range: 1-12

Internal.second order variable velocity

velocities of second order variables of the element.
range: 1-12

Internal.volume

volume of an element

Internal.potential _energy

potential (strain) energy of an element

Internal.kinetic__energy

kinetic energy of an element

Internal.acceleration

accelerations of the element. range: 1-12

Suitable Connectors:

The following connectors can be used to constrain the element:
PointJoint, [3.3.1 CoordinateConstraint, [3.3.2] VelocityCoordinateConstraint, [3.3.3] Multi-

136 CHAPTER 3. HOTINT REFERENCE MANUAL

CoordConstraint, SlidingPointJoint, [3.3.5] SlidingPrismaticJoint, [3.3.6] Rope3D, [3.3.7
FrictionConstraint, Contact1D, PlaneConstraint, GenericBodyJoint,
RevolutelJoint, PrismaticJoint, [3.3.13] UniversalJoint, RigidJoint, Cylin-
dricalJoint, [3.3.16] SpringDamperActuator, RigidLink, RotatorySpringDampe-
rActuator,

Example

see file LinearBeam3D.txt

b
% define a material
beam_material
{
material_type = "Beam3DProperties"
cross_section_type = 1 % rectangular cross section
cross_section_size = [0.1,0.1]
density =1
EA =1
Ely = 1
ElIz = 1
GAky
GAkz
GJkx
RhoA
RhoIx
Rholy
Rholz
}

nBeamMaterial = AddBeamProperties(beam_material)

1
1
1
1

Il
= e

h

% define two nodes

nodel
{
node_type = "Node3DRxyz"
Geometry
{
reference_position = [0,0,0]
reference_rot_angles = [0,0,0]
}
}
nl = AddNode(nodel)
node?2
{
node_type = "Node3DRxyz"
Geometry
{

reference_position = [1,0,0]
reference_rot_angles = [0,0,0]

3.2. ELEMENT 137

¥
}
n2 = AddNode(node2)

beam

{
element_type= "LinearBeam3D"
Physics
{
material _number = nBeamMaterial
}
Geometry.node_1 = nl
Geometry.node_2 = n2

}

nBeam = AddElement (beam)

3.2.11 RotorBeamXAxis
Short description

The RotorBeamXAxis element is a three dimensional elastic rotor beam element. It has exact
the same characteristics and properties as the LinearBeam3D element except two differences.
The first difference is that for a rotor element it is necessary to enable big rotation about the
rotor axis instead of the small rotation of the LinearBeam3D. The second difference is that all
element DOF are stored w.r.t. local beam coordinate system.

Degrees of freedom

Bending is described by 4 DOF, the number of DOF for axial deformation as well as torsion is
2. These 12 DOF are stored in two nodes i and j. The DOF vector of the LinearBeam3D read
as follows

q? = [q?,qD) = [¢©,y® 2O ¢ D ¢0 10 yi) 0 GO GO DT (3.8)

T 'y ¥z

Nodes

To create a new rotor beam element the user has to define two 'Node3DR123’ nodes i and j.
Every node of this type has 6 DOF. The first 3 DOF describe the node displacement (x,y, 2)
w.r.t local rotor element coordinate system, the last 3 DOF are angles of rotation (¢, ¢y, ¢.)
w.r.t local rotor element coordinate system. The rotation about the local x-axis is considered
as large, the rotations about the local y and z-axes are considered as small (linearized angles).
The reference positions of the nodes define the beam ends at initial configuration and so the
length of the beam. The beam orientation is defined due to reference rot angles of node i.

Geometry

The rotor beam geometry is fully defined by 2 'Node3DR123’ nodes and a ’'Beam3DProperties’
material element. Beam length and orientation is specified due to node positions and the beam
cross section size due to the material. The rotor beam has a circular cross section.

138 CHAPTER 3. HOTINT REFERENCE MANUAL

Figure 3.14: RotorBeamXAxis

Data objects of RotorBeamX Axis:

] Data name \ type \ R \ default description

element type string "RotorBeam X Axis"
specification of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "RotorBeamX Axis"
name of the element

element number integer R |1 number of the element in the mbs

loads vector (] Set loads attached to this element: ’nr_loadl,
nr_load2, ... or empty

Graphics

Graphics.RGB _ color vector [0.1, 0.1, 0.8] [red, green, blue| color of element, range = 0..1,
use default color:[-1,-1,-1]

Graphics.geom elements | vector [] Set Geometric elements to represent body ’geo-
meleml, geomelem2, ...” or empty

Graphics. bool 0 Graphical representation of element with geom-

use_alternative shape objects that are attached to the element

Graphics.show _element bool 1 Flag to draw element

Geometry

Geometry.node 1 integer 1 number of Node 1

Geometry.node 2 integer 2 number of Node 2

Physics

Physics. bool 1 include effect of axial deformation

axial _deformation

Physics.material number | integer 1 material number which contains the main mate-
rial properties of the beam

Observable FieldVariables:

The following values can be measured with a FieldVariableElementSensor, [3.9.1] The sensor
needs 2 informations: the field variable itself and the component. For more information see
section [B.1]

’ field variable ‘ possible components

3.2. ELEMENT 139

position X, ¥, z, magnitude
displacement, X, y, Z, magnitude
velocity X, ¥, z, magnitude

velocity local basis
beam torsion
beam force axial

X, y, z, magnitude

beam force transversal Y, Z

beam moment torsional

beam moment bending Y, Z

acceleration X, y, z, magnitude
bryant angle X, ¥, z, magnitude

angular _velocity X, y, z, magnitude
angular velocity local basis X, y, z, magnitude
stress XX, Xy, Xz, VY, Yz, 2z, magnitude
stress _mises

Observable special values:

For more information see section B.1]

value name

description

Internal. DOF

degrees of freedom (or generalized unknowns) of the
element. range: 1-24

Internal.second order variable

second order variables of the element. range: 1-12

Internal.second order variable velocity

velocities of second order variables of the element.
range: 1-12

Internal.volume

volume of an element

Internal.potential energy

potential (strain) energy of an element

Internal kinetic energy

kinetic energy of an element

Internal.acceleration

accelerations of the element. range: 1-12

Suitable Connectors:

The following connectors can be used to constrain the element:

PointJoint, CoordinateConstraint, VelocityCoordinateConstraint, [3.3.3] Multi-
CoordConstraint, SlidingPointJoint, [3.3.5] SlidingPrismaticJoint, [3.3.6) Rope3D, [3.3.7
FrictionConstraint, Contact1D, [3.3.9] PlaneConstraint, GenericBodyJoint, [3.3.11
RevoluteJoint, [3.3.12] PrismaticJoint, [3.3.13] UniversalJoint, [3.3.14] RigidJoint, [3.3.15] Cylin-

dricalJoint, [3.3.16] SpringDamperActuator, RigidLink, [3.3.18] RotatorySpringDampe-
rActuator, [3.3.19]

Example

see file RotorBeamXAxis.txt

%
% define a material
beam_material

{

material_type = '"Beam3DProperties"

140 CHAPTER 3. HOTINT REFERENCE MANUAL

cross_section_type = 2 % circular cross section
[0.1]

cross_section_size
density =1

EA =1

Ely = 1
ElIz = 1
GAky =

GAkz

GJkx

RhoA

RholIx
Rholy
Rholz

1
1
1
1

nun n
N

3

nBeamMaterial = AddBeamProperties(beam_material)

h

% define two nodes

nodel
{
node_type = "Node3DR123"
Geometry
{
reference_position = [0,0,0]
reference_rot_angles = [0,0,0]
}
}
nl = AddNode(nodel)
node?2
{
node_type = "Node3DR123"
Geometry
{

reference_position = [1,0,0]
reference_rot_angles = [0,0,0]
}
¥
n2 = AddNode(node2)

rotor_beam

{
element_type= "RotorBeamXAxis"
Physics
{
material_number = nBeamMaterial
}

Geometry.node_1 = nl
Geometry.node_2 = n2

3.2. ELEMENT 141

nRotorBeam = AddElement (rotor_beam)

3.2.12 ANCFBeamShear3DLinear

Short description

ANCFBeamShear3DLinear is an ANCF beam finite element for multibody dynamics systems
which is capable of large deformations and can be used for static as well as dynamic investiga-
tions. The beam finite element can reproduce axial, bending, shear and torsional deformation.
A linear interpolation for the geometry and the displacement along the beam axis is chosen.
The definition of the beam finite element is based on the absolute nodal coordinate formula-
tion (ANCF), which uses slope vectors for the parameterization of the orientation of the cross
section instead of rotational parameters. Two different formulations for the elastic forces of the
beam elements are presented:

(1) A structural mechanics based formulation of the elastic forces based on Reissner’s nonlinear
rod theory including generalized strain measures. A term accounting for thickness and cross
section deformation is included and shear locking is prevented.

(2) A continuum mechanics based formulation of the elastic forces for a St.Venant Kirchhoff
material which avoids the Poisson and shear locking phenomenon.

Degrees of freedom

The degrees of freedom of the i-th node are the nodal displacements and change of slope vectors
and read as follows
i i i i)T
Q" =" a) (39)

Hence, nine degrees of freedom are specified in each node, therefore the two-noded linear beam
element has 18 degrees of freedom.

Nodes

The element needs 2 nodes of type 'Node3DS2S3’. The element is described by two nodes at
the end points of the beam (node 1 = left node, node 2 = right node). See Fig. for a
sketch of the two-noded linear beam element and the degrees of freedom per node.

Geometry

The deformed geometry of the ANCFEF beam finite elements is defined by position and two
slope vectors in each node, see Fig. |3.15. The slope vectors r%) and rf? are no unit vectors,
therefor a cross section deformation is not prohibited. The displacement along the beam axis is
interpolated with linear shape functions, while the orientation of the cross section is interpolated
linearly. The slope vectors are the derivative vectors with respect to the coordinate system of
the scaled straight reference element, see Fig. [3.16]

Description of the different modi

142 CHAPTER 3. HOTINT REFERENCE MANUAL

CMF The definition of the elastic forces is based on a con-
tinuum mechanics based formulation for a St.Venant
Kirchhoff material using the relation between the
nonlinear Green-Lagrange strain tensor and the se-
cond Piola-Kirchhoff stress tensor. The beam is de-
fined as any other solid finite element and the vo-
lume integration can be chosen via the variables or-
der axial and order crosssectional in this modus.
Using the parameters integration order axial (de-
fault: 3) and integration order cross section (de-
fault: 2) the respective integration orders (using
Gaussian integration points) may be defined.

SMF The definition of the elastic forces is based on a
structural mechanics based formulation based on
Reissner’s nonlinear rod theory including generalized
strain measures, namely the axial strain, the shear
strains, the torsional strain, and the bending strains.
The integration along the beam axis is performed
as follows: two Lobatto integration points are used
for the integration of the elastic forces covering cross
section deformation and one Gauss point is used for
the integration of the terms accounting for axial de-
formation, bending, shear and torsion.

Additional notes

In general: For further details on the definition of the elastic forces, the strain measures or the
cross section deformation see reference [15].

Cross section deformation: In order to penalize a possible cross section deformation of the beam,
an additional term is added to the classical strain energy and can be varied by the penalization
factors named penalty. See reference [I5] for more details.Examples: Find static and linearized
dynamic applications of the beam element as well as nonlinear dynamic examples and buckling
tests in reference [16].

3.2. ELEMENT 143

Figure 3.15: The geometric description of the elements is based on a position vector r and two

slope vectors rfi) and r’(? in the i-th node. These vectors are defined on a scaled and straight

reference element, given in coordinates (&, 7, ().

n
A
G n:H/z
C=wn ’
SR -
£=—Ln2 3 .
@)
r”](l) ryn(z)
|
7777777777777777777777 -
r (l) ” /’l' V(z)
s i:f'if
(b)

Figure 3.16: Different configurations of the finite beam element: (a) scaled straight reference
element and (b) the reference element depicted in the global coordinate system.

Data objects of ANCFBeamShear3DLinear:

] Data name \ type \ R \ default description

node2 reference position

144 CHAPTER 3. HOTINT REFERENCE MANUAL

element type string "ANCFBeamShear3DLinear"
specification of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "Element" name of the element

element number integer 1 number of the element in the mbs

loads vector (] Set loads attached to this element: ’nr_loadl,
nr_load2, ...” or empty

Graphics

Graphics.RGB _ color vector [0.1, 0.1, 0.8] [red, green, blue| color of element, range = 0..1,
use default color:[-1,-1,-1]

Graphics.geom elements | vector (] Set Geometric elements to represent body ’geo-
melem1, geomelem2, ...” or empty

Graphics. bool 0 Graphical representation of element with geom-

use_alternative shape objects that are attached to the element

Graphics.show _element bool 1 Flag to draw element

ShearBeam

ShearBeam. bool 0 is straight beam in reference configuration

straight beam

ShearBeam. integer 4 2 = CMF, 4 = SMF

beamformulation

ShearBeam.calc linear bool 0 linearized strain computation in cont. mech. for-
mulation (CMF)

ShearBeam.nnodes integer 2 number of nodes

ShearBeam. integer 3 axial integration order

integration order axial

ShearBeam.integra- integer 2 cross section integration order, takes effect only

tion order cross_section in cont. mech. formulation (CMF)

ShearBeam. integer 1 number of integration points per disc quadrant in

ip_number_ per_disc_quafdrant angular direction, required if cross_section _type
of Beam3DProperties is circular or tubular

ShearBeam. vector [1, 1, 1] penalty term for kappa [kappal,kappa2,kappad]

penalty kappa

ShearBeam. vector [1, 1, 1] penalty term for gamma

penalty gamma [gammal,gamma2,gamma3]

ShearBeam.penalty E vector [1, 1, 1] penalty term for green lagrange strains (E)
[Eyy,Ezz,Eyz|

Geometry

Geometry. vector [1, 0.1, 0.1] dimensions of the beam. [L_x (length), L_y

body dimensions (width), L 7z (height)]

Geometry.node numberl | integer 1 global number of node 1 (left), node must already
exist

Geometry.node number2 | integer 2 global number of node 2 (right), node must alre-
ady exist

Physics

Physics.material number | integer 1 material number which contains the main mate-
rial properties of the beam

Initialization

Initialization. vector [0, 0, O] position of node 1 (left) in reference configuration.

nodel reference position

Initialization. vector [0, 0, 0] slope vector 2 of node 1 (left) in reference confi-

nodel _reference slope 2 guration.

Initialization. vector [0, 0, 0] slope vector 3 of node 1 (left) in reference confi-

nodel reference slope 3 guration.

Initialization. vector [0, 0, O] position of node 2 (right) in reference configura-

tion.

3.2. ELEMENT

145

Initialization. vector [0, 0, 0] slope vector 2 of node 2 (right) in reference con-
node2 reference slope 2 figuration.

Initialization. vector [0, 0, 0] slope vector 3 of node 2 (right) in reference con-
node2 reference slope 3 figuration.

RotorDynamics

RotorDynamics. double 0 Element is rotating with angular _velocity around
angular velocity axis.

Observable FieldVariables:

The following values can be measured with a FieldVariableElementSensor, [3.9.1 The sensor
needs 2 informations: the field variable itself and the component. For more information see

section B.1]

| field_variable

possible components

position X, y, Z, magnitude
displacement, X, ¥, z, magnitude
bryant _angle X, y, z, magnitude

rotations 312 X, ¥, z, magnitude
velocity X, y, z, magnitude
angular velocity X, ¥, z, magnitude
stress XX, Xy, Xz, VY, YZ, 2z, magnitude

stress__mises

beam curvature X, y, z, magnitude
beam torsion
beam moment bending X, y, z, magnitude
beam moment torsional
beam shear X, y, z, magnitude
beam axial extension
beam _force transversal X, y, z, magnitude
beam force axial

Observable special values:

For more information see section [3.1]
value name description

Internal kinetic _energy

force in the rope

Internal.potential energy

length of the rope

Suitable Connectors:

The following connectors can be used to constrain the element:

PointJoint, CoordinateConstraint, VelocityCoordinateConstraint, [3.3.3] Multi-
CoordConstraint, SlidingPointJoint, [3.3.5] SlidingPrismaticJoint, [3.3.6), Rope3D,
FrictionConstraint, [3.3.8], Contact1D, [3.3.9] PlaneConstraint, [3.3.10, GenericBodyJoint, [3.3.11]

146 CHAPTER 3. HOTINT REFERENCE MANUAL

RevoluteJoint, |3.3.12] PrismaticJoint, [3.3.13] UniversalJoint, [3.3.14] RigidJoint, [3.3.15] Cylin-
dricalJoint, [3.3.16] SpringDamperActuator, [3.3.17] RigidLink, [3.3.18, RotatorySpringDampe-
rActuator, [3.3.19

Example

see file ANCFBeamShear3DLinear.txt

my_material
{
material_type= "Beam3DProperties"
cross_section_type= 1
cross_section_size= [0.1, 0.1]
EA= 20000
EIy= 16.66666666666667
EIz= 16.66666666666667
GAky= 7692.307692307694
GAkz= 7692.307692307694
GJkx= 10.81538461538462
RhoA= 72
RhoIx= 0.12
RhoIy= 0.06
RhoIz= 0.06
density= 7200
}

nMaterial = AddBeamProperties(my_material)

node

{
node_type = "Node3DS2S3"
Geometry.reference_position = [0,0,0]
Geometry.reference_slope2 = [0,1,0]
Geometry.reference_slope3 = [0,0,1]

}

nNodel = AddNode(node)

node.Geometry.reference_position = [1,0,0]
nNode2 = AddNode(node)

my_beam

{
element_type = "ANCFBeamShear3DLinear"
Physics.material_number = nMaterial
ShearBeam.beamformulation = 4
Geometry.node_numberl = nNodel
Geometry.node_number2 = nNode2

by

nElement = AddElement (my_beam)

ViewingOptions.FiniteElements.Nodes.show = 1
ViewingOptions.FiniteElements.Nodes.node_size = 0.05

3.2. ELEMENT 147

3.2.13 ANCFBeamShear3DQuadratic

Short description

ANCFBeamShear3DQuadratic is an ANCF beam finite element for multibody dynamics sy-
stems which is capable of large deformations and can be used for static as well as dynamic
investigations. The beam finite element can reproduce axial, bending, shear and torsional de-
formation. A quadratic interpolation for the geometry and the displacement along the beam
axis is chosen.

The definition of the beam finite element is based on the absolute nodal coordinate formula-
tion (ANCF'), which uses slope vectors for the parameterization of the orientation of the cross
section instead of rotational parameters. Two different formulations for the elastic forces of the
beam elements are presented:

(1) A structural mechanics based formulation of the elastic forces based on Reissner’s nonlinear
rod theory including generalized strain measures. A term accounting for thickness and cross
section deformation is included and shear locking is prevented.

(2) A continuum mechanics based formulation of the elastic forces for a St.Venant Kirchhoff
material which avoids the Poisson and shear locking phenomenon.

Degrees of freedom

The degrees of freedom of the i-th node are the nodal displacements and change of slope vectors
and read as follows
i i i 0T
q? = [T ufn)T ufc) 7. (3.10)

Hence, nine degrees of freedom are specified in each node, therefore the three-noded quadratic
beam element has 27 degrees of freedom.

Nodes

The element needs 3 nodes of type 'Node3DS2S3’. The element is described by three nodes: at
the end points and the mid point of the beam (node 1 = left node, node 2 = right node, node
3 = mid point). See Fig. for a sketch of the three-noded quadratic beam element and the
degrees of freedom per node.

Geometry

The deformed geometry of the ANCE beam finite elements is defined by position and two
slope vectors in each node, see Fig. |3.15. The slope vectors r%) and rf? are no unit vectors,
therefor a cross section deformation is not prohibited. The displacement along the beam axis
is interpolated with quadratic shape functions, while the orientation of the cross section is
interpolated linearly. The slope vectors are the derivative vectors with respect to the coordinate
system of the scaled straight reference element, see Fig.

Description of the different modi

148

CHAPTER 3. HOTINT REFERENCE MANUAL

CMF

The definition of the elastic forces is based on a con-
tinuum mechanics based formulation for a St.Venant
Kirchhoff material using the relation between the
nonlinear Green-Lagrange strain tensor and the se-
cond Piola-Kirchhoff stress tensor. The beam is de-
fined as any other solid finite element and the vo-
lume integration can be chosen via the variables or-
der axial and order crosssectional in this modus.
Using the parameter perform reduced integration,
the standard integration order is reduced, in order to
reduce stiffening effects or computation time.

SMF

The definition of the elastic forces is based on a
structural mechanics based formulation based on
Reissner’s nonlinear rod theory including generalized
strain measures, namely the axial strain, the shear
strains, the torsional strain, and the bending strains.
The integration along the beam axis is performed
as follows: two Lobatto integration points are used
for the integration of the elastic forces covering cross
section deformation and one Gauss point is used for
the integration of the terms accounting for axial de-
formation, bending, shear and torsion.

Additional notes

In general: For further details on the definition of the elastic forces, the strain measures or the

cross section deformation see reference [15].

Cross section deformation: In order to penalize a possible cross section deformation of the
beam, an additional term is added to the classical strain energy and can be varied by the
penalization factors named penalty. See reference [I5] for more details.

Examples: Find static and linearized dynamic applications of the beam element as well as
nonlinear dynamic examples and buckling tests in reference [16].

3.2. ELEMENT 149

Figure 3.17: The geometric description of the elements is based on a position vector r™ and two
slope vectors r%) and r(é) in the i-th node. These vectors are defined on a scaled and straight
reference element, given in coordinates (&, 7, ().

C=—-wWi2

=H2
C=wn2 1

n=-H2

E=-L12 ¢ E=1L2

(b)

Figure 3.18: Different configurations of the finite beam element: (a) scaled straight reference
element and (b) the reference element depicted in the global coordinate system.

Data objects of ANCFBeamShear3DQuadratic:

| Data name | type | R | default description

150 CHAPTER 3. HOTINT REFERENCE MANUAL

element type string "ANCFBeamShear3DQuadratic"
specification of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "Element" name of the element

element number integer 1 number of the element in the mbs

loads vector (] Set loads attached to this element: ’nr_loadl,
nr_load2, ...” or empty

Graphics

Graphics.RGB _ color vector [0.1, 0.1, 0.8] [red, green, blue| color of element, range = 0..1,
use default color:[-1,-1,-1]

Graphics.geom elements | vector (] Set Geometric elements to represent body ’geo-
melem1, geomelem2, ...” or empty

Graphics. bool 0 Graphical representation of element with geom-

use_alternative shape objects that are attached to the element

Graphics.show _element bool 1 Flag to draw element

ShearBeam

ShearBeam. bool 0 is straight beam in reference configuration

straight beam

ShearBeam. integer 4 2 = CMF, 4 = SMF

beamformulation

ShearBeam.calc linear bool 0 linearized strain computation in cont. mech. for-
mulation (CMF)

ShearBeam.nnodes integer 3 number of nodes

ShearBeam. integer 3 axial integration order

integration order axial

ShearBeam.integra- integer 2 cross section integration order, takes effect only

tion order cross_section in cont. mech. formulation (CMF)

ShearBeam. integer 1 number of integration points per disc quadrant in

ip_number_ per_disc_quafdrant angular direction, required if cross_section _type
of Beam3DProperties is circular or tubular

ShearBeam. vector [1, 1, 1] penalty term for kappa [kappal,kappa2,kappad]

penalty kappa

ShearBeam. vector [1, 1, 1] penalty term for gamma

penalty gamma [gammal,gamma2,gamma3]

ShearBeam.penalty E vector [1, 1, 1] penalty term for green lagrange strains (E)
[Eyy,Ezz,Eyz|

Geometry

Geometry. vector [1, 0.1, 0.1] dimensions of the beam. [L_x (length), L_y

body dimensions (width), L 7z (height)]

Geometry.node numberl | integer 1 global number of node 1 (left), node must already
exist

Geometry.node number2 | integer 2 global number of node 2 (right), node must alre-
ady exist

Geometry.node number3 | integer 3 global number of node 3 (middle), node must al-
ready exist

Physics

Physics.material number | integer 1 material number which contains the main mate-
rial properties of the beam

Initialization

Initialization. vector [0, 0, 0] position of node 1 (left) in reference configuration.

nodel _reference position

Initialization. vector [0, 0, 0] slope vector 2 of node 1 (left) in reference confi-

nodel reference slope 2 guration.

Initialization. vector [0, 0, O] slope vector 3 of node 1 (left) in reference confi-

nodel reference slope 3 guration.

3.2. ELEMENT

151

Initialization. vector [0, 0, 0] position of node 2 (right) in reference configura-
node2 reference position tion.

Initialization. vector [0, 0, 0] slope vector 2 of node 2 (right) in reference con-
node2 reference slope 2 figuration.

Initialization. vector [0, 0, 0] slope vector 3 of node 2 (right) in reference con-
node2 reference slope 3 figuration.

Initialization. vector [0, 0, O] position of node 3 (middle) in reference configu-
node3 reference position ration.

Initialization. vector [0, 0, 0] slope vector 2 of node 3 (middle) in reference con-
node3 reference slope 2 figuration.

Initialization. vector [0, 0, 0] slope vector 3 of node 3 (middle) in reference con-
node3 reference slope 3 figuration.

RotorDynamics

RotorDynamics. double 0 Element is rotating with angular _velocity around

angular _velocity

axis.

Observable FieldVariables:

The following values can be measured with a FieldVariableElementSensor, [3.9.1

The sensor

needs 2 informations: the field variable itself and the component. For more information see

section [B.1]

| field_variable

possible components

position X, y, z, magnitude
displacement, X, ¥, z, magnitude
bryant _angle X, y, z, magnitude
rotations 312 X, ¥, z, magnitude
velocity X, y, z, magnitude
angular _velocity X, ¥, z, magnitude
stress XX, Xy, XZ, VY, VZ, 27, magnitude
stress__mises
beam curvature X, y, z, magnitude
beam torsion
beam moment bending X, y, z, magnitude
beam moment torsional
beam shear X, y, z, magnitude
beam axial extension
beam force transversal X, y, z, magnitude
beam force axial

Observable special values:

For more information see section [3.1]
value name description

Internal kinetic _energy

force in the rope

Internal.potential energy

length of the rope

152 CHAPTER 3. HOTINT REFERENCE MANUAL

Suitable Connectors:

The following connectors can be used to constrain the element:
PointJoint, CoordinateConstraint, [3.3.2] VelocityCoordinateConstraint, [3.3.3] Multi-
CoordConstraint, |3.3.4] SlidingPointJoint, [3.3.5] SlidingPrismaticJoint, [3.3.6] Rope3D, |3.3.7

FrictionConstraint, Contact1D, [3.3.9] PlaneConstraint, GenericBodyJoint,
RevoluteJoint, PrismaticJoint, [3.3.13] UniversalJoint, RigidJoint, Cylin-
dricalJoint, [3.3.16] SpringDamperActuator, RigidLink, RotatorySpringDampe-
rActuator,

Example

see file ANCFBeamShear3DQuadratic.txt

my_material
{
material_type= "Beam3DProperties"
cross_section_type= 1
cross_section_size= [0.1, 0.1]
EA= 20000
EIy= 16.66666666666667
EIz= 16.66666666666667
GAky= 7692.307692307694
GAkz= 7692.307692307694
GJkx= 10.81538461538462
RhoA= 72
RhoIx= 0.12
RhoIy= 0.06
RhoIz= 0.06
density= 7200
}

nMaterial = AddBeamProperties(my_material)

node

{
node_type = "Node3DS253"
Geometry.reference_position = [0,0,0]
Geometry.reference_slope2 = [0,1,0]
Geometry.reference_slope3 = [0,0,1]

}

nNodel = AddNode (node)

node.Geometry.reference_position = [1,0,0]
nNode2 = AddNode(node)

node.Geometry.reference_position = [0.5,0,0]

nNode3 = AddNode(node)

my_beam

{
element_type = "ANCFBeamShear3DQuadratic"
Physics.material_number = nMaterial

3.2. ELEMENT 153

ShearBeam.beamformulation = 4
Geometry.node_numberl = nNodel
nNode?2
nNode3

Geometry.node_number2
Geometry.node_number3

}
nElement = AddElement (my_beam)

ViewingOptions.FiniteElements.Nodes.show = 1
ViewingOptions.FiniteElements.Nodes.node_size = 0.05

3.2.14 ANCFBeam3DTorsion
Short description

ANCFBeam3DTorsion is a Bernoulli-Euler beam finite element in ANCF (Absolute Nodal
Coordinate Formulation) capable of large axial, bending, and torsional deformations.

Degrees of freedom

The element affects 14 degrees of freedom (generalized coordinates) in total, which are 7 degrees
of freedom per node, i.e., at each node we have: the axial displacement u = r — r(, the change
of the axial slope u’ = r’ —r(, and the change of the torsional angle § — 6,. Each quantity with
index O here confers to the reference configuration. The element wise ordering of the degrees
of freedom is displayed in Fig.

Nodes

The element operates with two Nodes of type Node3DS1rot1, each of which are located at either

tip of the beam element. The integer values Geometry.node numberl and Geometry.node number?2
refer to the index of the nodes in the multibody system. Each of these Nodes is instantiated by
the user with a position and a rotation (kardan angles), and provides a frame (eq, €3, €3) (which

is measured in the global frame of the multibody system) for the instantiation of the beam
elemtent: At each node, the slope of the beam axis r’ is identical with e;, and the director is
defined as es.

Geometry

The geometry of the element is defined by the nodal values for axial position r, the axial slope
vector r’; and the torsional angle 6 of the cross section around the beam axis, see Fig.[3.20] This
angle is measured with respect to a reference direction in the global frame (director). Between
the nodal values, the axial position is interpolated cubically, the axial slope is interpolated
quadratically, and the torsional angle of the cross section (around the beam axis) as well as the
director are interpolated linearly.

Equations

Variation of the strain energy:

L2
oIl :/ (EAe de + GJky 0k + El ko ko + El k3 0k3) dE. (3.11)
—L/2

154 CHAPTER 3. HOTINT REFERENCE MANUAL

Considering viscous material damping, we replace ¢ — & and x; — k¥ for i € {1,2, 3} with

a T
¥ =e+€P, P =cxé=ck (—€> q, (3.12)
dq
E D D . Ok, ! .
K =K + K, K; = Ck Ri = CKk q, (3.13)
dq

resulting in

L/2
oIl :/ (EA (e +ck€)de + GJ (k1 + ¢k F1) 0K+
—L/2

+E]y (:‘12 + Cci I€2> 5:%2 + E]z (Iig + ckx Hg) (5%3) df (314)

Additional notes

For details on the element, such as the definition of the elastic forces and the kinetic terms, see
|17, [18].

Figure 3.19: The geometry of the element is defined by nodal values for (a) the axial position, (b)
the axial slope vector, and (c) the torsional angle of the cross section around the beam axis. This
angle is measured with respect to a reference direction in the global frame (director). Between
the nodal values, the axial position is interpolated cubically, the axial slope is interpolated
quadratically, and the torsional angle of the cross section (around the beam axis) as well as the
director are interpolated linearly.

3.2. ELEMENT

155

(10,11,12)

Figure 3.20: Ordering of the generalized coordinates.

Data objects of ANCFBeam3DTorsion:

’ Data name ‘ type ‘ R ‘ default description

element type string "ANCFBeam3DTorsion"
specification of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "ANCFBeam3DTorsion"
name of the element

element number integer R |1 number of the element in the mbs

loads vector (] Set loads attached to this element: ’nr_loadl,
nr_load2, ...” or empty

Graphics

Graphics.RGB _ color vector [0.1, 0.1, 0.8] [red, green, blue| color of element, range = 0..1,
use default color:[-1,-1,-1]

Graphics.geom elements | vector (] Set Geometric elements to represent body ’geo-
melem1, geomelem2, ...” or empty

Graphics. bool 0 Graphical representation of element with geom-

use_alternative shape objects that are attached to the element

Graphics.show _element bool 1 Flag to draw element

Geometry

Geometry.node numberl | integer 1 global number of node 1 (left), node must already
exist

Geometry.node number2 | integer 2 global number of node 2 (right), node must alre-
ady exist

Geometry. bool 0 update directors during calculation

update _directors

Computation

Computation.kinema- integer 0 0 .. exact kinematic terms + 5th order gaussian

tic_computation mode integration (slow), 1 .. exact terms + 1st order
lobatto integration (fast), 2 .. constant mass ma-
trix approximation (fastest)

Computation.IntegrationOrder

Computation. integer 4 integration order for mass terms

IntegrationOrder.mass

Computation. integer 9 integration order for work of axial strain

IntegrationOrder.

axial strain

Computation. integer 5 integration order for work of curvature

IntegrationOrder.

curvature

Physics

156 CHAPTER 3. HOTINT REFERENCE MANUAL

material number which contains the main mate-
rial properties of the beam

Physics.material number | integer 1

Observable FieldVariables:

The following values can be measured with a FieldVariableElementSensor, [3.9.1l The sensor
needs 2 informations: the field variable itself and the component. For more information see

section B.1]

] field variable possible components

position X, y, z, magnitude
displacement, X, ¥, z, magnitude
velocity X, y, z, magnitude

velocity local basis X, ¥, z, magnitude
beam axial extension
beam force axial
beam curvature

beam moment

beam torsion

beam moment torsional

X, y, z, magnitude
X, ¥, z, magnitude

Observable special values:

For more information see section B.1]

value name description

Internal. DOF

degrees of freedom (or generalized unknowns) of the
element. range: 1-28

Internal.second order variable

second order variables of the element. range: 1-14

Internal.second order variable velocity

velocities of second order variables of the element.
range: 1-14

Internal.data_variable

data varibales of the element which are no degrees of
freedom (e.g. inelastic strain, contact state, friction
state, etc.). range: 1-6

Internal.volume

volume of an element

Internal.potential _energy

potential (strain) energy of an element

Internal kinetic _energy

kinetic energy of an element

Suitable Connectors:

The following connectors can be used to constrain the element:

PointJoint, CoordinateConstraint, VelocityCoordinateConstraint, [3.3.3] Multi-
CoordConstraint, Rope3D, [3.3.7, FrictionConstraint, ContactlD, [3.3.9] PlaneCon-
straint, GenericBodyJoint, [3.3.11] RevoluteJoint, [3.3.12] PrismaticJoint, [3.3.13] Uni-
versalJoint, RigidJoint, CylindricalJoint, [3.3.16] SpringDamperActuator, [3.3.17
RigidLink, [3.3.18]

3.2. ELEMENT 157

Example
see file ANCFBeam3DTorsion.txt

node
{
node_type= "Node3DSlrotl"
Geometry
{
reference_position= [0, 0, 0]
reference_rot_angles= [0, 0, 0]
}
}
nNodel = AddNode(node)

node.Geometry.reference_position = [1,0,0]
nNode2 = AddNode(node)

beamproperties

{
material_type= "Beam3DProperties"
cross_section_type= 1
cross_section_size= [0.1, 0.1]
EA= 2100000000
EIy= 1750000
EIz= 1750000
GJkx= 2692307.692307693

}

nBeamProperties = AddBeamProperties(beamproperties)

element

{
element_type= "ANCFBeam3DTorsion"

loads= [1]
Physics
{
material_number= nBeamProperties
}
Geometry

{
node_numberl= nNodel
node_number2= nNode?2
}
}
AddElement (element)

3.2.15 Hexahedral

Short description

The Hexahedral is a 3D element with 8 or 20 nodes, 6 faces with 4 nodes each.
The local coordinates ranges [—1,+1] for {z,y, z}.

158 CHAPTER 3. HOTINT REFERENCE MANUAL

order 1 nodes

NodeNumber 1 2 3 4

local Coord (-1,-1,-1) (+1,-1,-1) | (-1,41,-1) | (+1,+1,-1)
NodeNumber 5 6 7 8

local Coord (-1,-1,+1) | (+1,-1,41) | (-1,+1,41) | (+1,41,+1)
additional order 2 nodes

NodeNumber 9 10 11 12

local Coord (0,-1,-1) (0,41,-1) | (0,1,+1) | (0,41,+1)
NodeNumber 13 14 15 16

local Coord (-1, 0,-1) (+1, 0,-1) (-1, 0,4+1) (+1, 0,+1)
NodeNumber 17 18 19 20

local Coord (-1,-1, 0) (+1,-1,0) | (-1,41,0) | (+1,+1,0)

node numbers of the element faces - counter-clockwise from outside

FaceNr O1 02 FaceCoordinates

1 1,5,7,3 1,5,7,3, 17,15,19,13 x'= (z+1)/2, y'= (y+1)/2
2 2,4,8.6 2,4,8.6, 14,20,16,18 x'= (y+1)/2, y'= (z+1)/2
3 1,2,6,5 1,2,6,5, 9,18,11,17 x'= (x+1)/2, y = (z+1)/2
4 3,7,8,4 3,7,8,4, 19,12,20,10 x'= (z+1)/2, y'= (x+1)/2
5 3,4,2,1 3,4,2,1, 10,14, 9,13 X'= (x+1)/2, y'= (1-y)/2
6 5,6,8,7 5,6,8,7, 11,16,12,15 x'= (x+1)/2, y'= (y+1)/2

Degrees of freedom

3 degrees of freedoms per node (24 or 60), arranged by node, {N1,, N1,,N1,, N2,,..N20,}

Limitations

The Hexahedral has only position DOFs

3.2. ELEMENT

A” I
I
|
5 | 6
I
I
| y
3,1/_7) 4
r”’ X
3 y
1 2
Figure 3.21: Order 1 Hexahedral
7 12 8
A2 15 I
| 16
5 —
11 19 |0 20
|
|
AT
17; §’|/_'_-_10___ i
13 .-
L’ 14
"/ ‘_X

9

2

Figure 3.22: Order 2 Hexahedral

Data objects of Hexahedral:

159

’ Data name

I type

I R I default

description

|

element type

string

"Hexahedral"

specification of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

160 CHAPTER 3. HOTINT REFERENCE MANUAL

name string "Element" name of the element

element number integer 1 number of the element in the mbs

loads vector (] Set loads attached to this element: ’nr_loadl,
nr_load2, ... or empty

Graphics

Graphics.RGB _ color vector [0.1, 0.1, 0.8] [red, green, blue| color of element, range = 0..1,
use default color:[-1,-1,-1]

Graphics.geom elements | vector [] Set Geometric elements to represent body ’geo-
melem1, geomelem2, ...’ or empty

Graphics. bool 0 Graphical representation of element with geom-

use_alternative shape objects that are attached to the element

Graphics.show _element bool 1 Flag to draw element

FiniteElement

FiniteElement.Node list | vector 1, 2, 3, 4, 5, 6,

7, 8] nodes of the element

FiniteElement. integer 1 index of the domain

Body index

FiniteElement. integer 1 material number which contains the main mate-

material number rial properties of the finite element

FiniteElement.Geometri- | integer 1 0..GNS_Linear, 1..GNS_NonlinearSmallStrain,

cNonlinearityStatus 2..GNS_NonlinearLargeStrain

RotorDynamics

RotorDynamics. vector [0, 0, O] Element is rotating with angular _velocity around

angular _velocity axis_ position.

RotorDynamics. vector [0, 0, 0] Element is rotating with angular _velocity around

axis_position

axis_position.

Observable FieldVariables:

The following values can be measured with a FieldVariableElementSensor, [3.9.1

The sensor

needs 2 informations: the field variable itself and the component. For more information see

section B.1]

‘ field variable

possible components

position X, ¥, z, magnitude

displacement, X, y, z, magnitude

velocity X, ¥, z, magnitude, x, y, z, magnitude
stress XX, Xy, Xz, YV, yZ, 2z, magnitude

stress__cauchy

Xx7 XY’

Xz, Yy, Yz, 2z, magnitude

stress_mises

total strain

XX7 Xy7

Xz, Yy, Yz, 77, magnitude

logarithmic _strain

XX) XY’

Xz, VY, Yz, 2z, magnitude

Observable special values:

For more information see section B.1]

value name

description

Internal.volume

volume of an element

3.2. ELEMENT 161

Internal.potential energy
Internal kinetic _energy

potential (strain) energy of an element
kinetic energy of an element

Suitable Connectors:

The following connectors can be used to constrain the element:

PointJoint, CoordinateConstraint, VelocityCoordinateConstraint, [3.3.3] Multi-
CoordConstraint, Rope3D, [B.3.7 FrictionConstraint, Contact1D, [3.3.9] PlaneCon-
straint, SpringDamperActuator, [3.3.17, RigidLink, [3.3.18]

3.2.16 Tetrahedral

Short description

The Tetrahedral is a 3D element with 4 or 10 nodes, 4 faces with 3 nodes each.
The local coordinates ranges [0, 1] for x, [0,1 — z] for y and [0,1 — 2 — y] for z.

order 1 nodes

NodeNumber 1 2 3 4

local Coord (0,0,0) (1,0,0) (0,1,0) (0,0,1)
additional order 2 nodes

NodeNumber 5 6 7

local Coord (3,0,0) (1,1.0) (0,%,0)
NodeNumber 8 9 10

local Coord (2,0,2) (0,4,2) (0,0,2)

node numbers of the element faces - counter-clockwise from outside

Degrees of freedom

FaceNr O1 02 FaceCoordinates
1 1,3,2 1,3,2, 7,6,5 X'=y, y=xXx
2 1,24 1,2,4, 5,8,10 X'=x,y=1z
3 1,4,3 1,4,3, 10,9,7 X'=z y=y
4 2,34 234,698 X'=y,y=1z

3 degrees of freedoms per node (12 or 30), arranged by node, {N1,, N1,, N1,, N2,,..N10,}

Limitations

The Tetrahedral has only position DOFs

162 CHAPTER 3. HOTINT REFERENCE MANUAL

Figure 3.23: Order 1 Tetrahedral

3.2. ELEMENT

Data objects of Tetrahedral:

163

Figure 3.24: Order 2 Tetrahedral

‘ Data name ‘ type ‘ R ‘ default description

element _type string "Tetrahedral" specification of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "Element" name of the element

element number integer R |1 number of the element in the mbs

loads vector (] Set loads attached to this element: ’nr_loadl,
nr_load2, ...” or empty

Graphics

Graphics.RGB_ color vector [0.1, 0.1, 0.8] [red, green, blue| color of element, range = 0..1,
use default color:[-1,-1,-1]

Graphics.geom elements | vector [] Set Geometric elements to represent body ’geo-
melem1, geomelem2, ...” or empty

Graphics. bool 0 Graphical representation of element with geom-

use_alternative shape objects that are attached to the element

Graphics.show _element bool 1 Flag to draw element

FiniteElement

FiniteElement.Node list | vector [1, 2, 3, 4] nodes of the element

FiniteElement. integer 1 index of the domain

Body index

FiniteElement. integer 1 material number which contains the main mate-

material number rial properties of the finite element

FiniteElement.Geometri- | integer 1 0..GNS_Linear, 1..GNS_NonlinearSmallStrain,

cNonlinearityStatus 2..GNS_NonlinearLargeStrain

RotorDynamics

RotorDynamics. vector [0, 0, O] Element is rotating with angular _velocity around

angular _velocity axis_position.

164

CHAPTER 3. HOTINT REFERENCE MANUAL

RotorDynamics. vector
axis_ position

[0, 0, 0]

Element is rotating with angular _velocity around
axis_ position.

Observable FieldVariables:

The following values can be measured with a FieldVariableElementSensor, [3.9.1l The sensor
needs 2 informations: the field variable itself and the component. For more information see

section B.1]

| field_variable

possible components

position X, y, z, magnitude

displacement, X, ¥, z, magnitude

velocity X, y, z, magnitude, X, y, z, magnitude
stress XX, Xy, Xz, VY, Yz, 2z, magnitude

stress_cauchy

XX, Xy, Xz, VY, YZ, 2z, magnitude

stress__mises

total _strain

XX, Xy, Xz, VY, YZ, 2z, magnitude

logarithmic _strain

XX, Xy, Xz, VY, Y%, 2z, magnitude

Observable special values:

For more information see section B.1]

value name

description

Internal.volume

volume of an element

Internal.potential energy

potential (strain) energy of an element

Internal kinetic energy

kinetic energy of an element

Suitable Connectors:

The following connectors can be used to constrain the element:

PointJoint, CoordinateConstraint, VelocityCoordinateConstraint, [3.3.3] Multi-
CoordConstraint, Rope3D, [3.3.7, FrictionConstraint, Contact1D, PlaneCon-
straint, SpringDamperActuator, [3.3.17, RigidLink, [3.3.18]

3.2.17 Prism

Short description

The Prism is a 3D element with 6 or 15 nodes, 5 faces total, 3 faces with 4 nodes and 2 faces

(base and top) with 3 nodes.

The local coordinates ranges [0, 1] for x, [0,1 — z] for y and [0, 1] for z.

order 1 nodes

3.2. ELEMENT

NodeNumber 1 2 3

local Coord (0,0,0) (1,0,0) (0,1,0)
NodeNumber 4 5 6

local Coord (0,0,1) (1,0,1) (0,1,1)
additional order 2 nodes

NodeNumber 7 8 9

local Coord (1,0,0) (3,1,0) (0,%,0)
NodeNumber 10 11 12
local Coord (0,0,3) (1,0,3) (0,1,2)
NodeNumber 13 14 15
local Coord (1,0,1) (3,1, 1) (0,2, 1)

165

node numbers of the element faces - counter-clockwise from outside

Degrees of freedom

FaceNr 01 02 FaceCoordinates
1 1,2,5,4 1,2,5,4, 7,11,12,10 X=X,y =1z
2 1,4,6,3 1,4,6,3, 10,15,12,9 X'=z,y=y
3 2,3,6,5 2,3,6,5, 8,12,14,11 X'=y,y=1z
4 1,3,2 1,3,2, 9,8,7 X'=y, y=x
5 45,6 45,6, 13,14,15 X'=x,y=y

3 degrees of freedoms per node (15 or 45), arranged by node, {N1,, N1,, N1,, N2,,..N15,}

Limitations

The Prism has only position DOFs

166 CHAPTER 3. HOTINT REFERENCE MANUAL

6

y
3 l/
’
. ’/ \\
’/ \
A AN
’ \
7 N
” \
ig \ X
e L >

1 2

Figure 3.25: Order 1 Prism

3.2. ELEMENT

101

167

13

----q- N N . . .-
—_—
A

<

11

7N\
s’ \
9 -~
s’ \
~ <
g N
, \
g N X
< . —
Figure 3.26: Order 2 Prism
Data objects of Prism:
’ Data name ‘ type ‘ R ‘ default description

element _type string "Prism" specification of element type. Once the element

is added to the mbs, you MUST NOT change this

type anymore!
name string "Element" name of the element
element number integer R |1 number of the element in the mbs
loads vector Il Set loads attached to this element: ’nr_loadl,

nr_load2, ... or empty
Graphics
Graphics.RGB _color vector [0.1, 0.1, 0.8] [red, green, blue] color of element, range = 0..1,

use default color:[-1,-1,-1]
Graphics.geom elements | vector [] Set Geometric elements to represent body ’geo-

meleml, geomelem2, ...” or empty
Graphics. bool 0 Graphical representation of element with geom-
use _alternative shape objects that are attached to the element
Graphics.show _element bool 1 Flag to draw element,
FiniteElement
FiniteElement.Node list | vector (1, 2, 3, 4] nodes of the element
FiniteElement. integer 1 index of the domain
Body index
FiniteElement. integer 1 material number which contains the main mate-
material number rial properties of the finite element
FiniteElement.Geometri- | integer 1 0..GNS_Linear, 1..GNS_NonlinearSmallStrain,
cNonlinearityStatus 2..GNS_NonlinearLargeStrain

168 CHAPTER 3. HOTINT REFERENCE MANUAL
RotorDynamics
RotorDynamics. vector [0, 0, 0] Element is rotating with angular _velocity around
angular _velocity axis_position.
RotorDynamics. vector [0, 0, O] Element is rotating with angular velocity around
axis_position axis_position.

Observable FieldVariables:

The following values can be measured with a FieldVariableElementSensor, [3.9.1l The sensor
needs 2 informations: the field variable itself and the component. For more information see

section [3.1]

] field variable

possible components

position X, y, z, magnitude

displacement, X, y, z, magnitude

velocity X, ¥, z, magnitude, x, y, z, magnitude
stress XX, Xy, XZ, VY, YZ, 27, magnitude

stress__cauchy

XX, Xy, Xz, VY, YZ, 2z, magnitude

stress _mises

total strain

XX, Xy, Xz, VY, Yz, 2z, magnitude

logarithmic strain

XX, Xy, XZ, VY, YZ, 2z, magnitude

Observable special values:

For more information see section B.1]

value name

description

Internal.volume

volume of an element

Internal.potential energy

potential (strain) energy of an element

Internal kinetic energy

kinetic energy of an element

Suitable Connectors:

The following connectors can be used to constrain the element:

PointJoint, CoordinateConstraint, VelocityCoordinateConstraint, [3.3.3] Multi-
CoordConstraint, [3.3.4] Rope3D, [3.3.7] FrictionConstraint, [3.3.8] Contact1D, [3.3.9] PlaneCon-
straint, SpringDamperActuator, RigidLink, [3.3.18]

3.2.18 Pyramid
Short description

The Pyramid is a 3D element with 5 or 13 nodes, 5 faces total, one face (base) with 4 nodes

and 4 faces with 3 nodes.

The local coordinates ranges [0, 1] for x and y and [0, 1 — max(z,y)] for z.

3.2. ELEMENT

order 1 nodes

169

NodeNumber 1 2 3 4
local Coord (0,0,0) (1,0,0) (0,1,0) (1,1,0)
NodeNumber 5
local Coord (0,0,1)
additional order 2 nodes
NodeNumber 6 7 8 9
local Coord (2,0,0) (3,1,0) (0,2, 0) (1,%,0)
NodeNumber 10 11 12 13
local Coord (0,0,3) (3,0,3) (0, 3,3) (3:3,3)
node numbers of the element faces - counter-clockwise from outside
FaceNr O1 02 FaceCoordinates
1 1,2,4,3 1,24,3, 6,9,7,8 X'=x,y=y
2 1,2,5 1,3,5, 6,11,10 X=X,y =1z
3 2,4,5 2,4,5,9,13,11 X'=y,y=1z
4 3,5,4 3,54, 12,13,7 X'=1z,y=X
5 1,5,3 1,5,3, 10,12,8 X'=z y=y

Degrees of freedom

3 degrees of freedoms per node (15 or 45), arranged by node, {N1,, N1,, N1,, N2,,..N15,}

Limitations

The Prism has only position DOFs

170 CHAPTER 3. HOTINT REFERENCE MANUAL

Figure 3.27: Order 1 Pyramid

Figure 3.28: Order 2 Pyramid

Data objects of Pyramid:

’ Data name ‘ type ‘ R ‘ default description

3.2. ELEMENT

171

element _type string "Pyramid" specification of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "Element" name of the element

element number integer 1 number of the element in the mbs

loads vector (] Set loads attached to this element: ’nr_loadl,
nr_load2, ... or empty

Graphics

Graphics.RGB __color vector [0.1, 0.1, 0.8] [red, green, blue] color of element, range = 0..1,
use default color:[-1,-1,-1]

Graphics.geom elements | vector [l Set Geometric elements to represent body ’geo-
meleml, geomelem2, ...” or empty

Graphics. bool 0 Graphical representation of element with geom-

use_alternative shape objects that are attached to the element

Graphics.show _element bool 1 Flag to draw element

FiniteElement

FiniteElement.Node list | vector (1, 2, 3, 4] nodes of the element

FiniteElement. integer 1 index of the domain

Body index

FiniteElement. integer 1 material number which contains the main mate-

material number rial properties of the finite element

FiniteElement.Geometri- | integer 1 0..GNS_Linear, 1..GNS_NonlinearSmallStrain,

cNonlinearityStatus 2..GNS_ NonlinearLargeStrain

RotorDynamics

RotorDynamics. vector [0, 0, 0] Element is rotating with angular _velocity around

angular _velocity axis_position.

RotorDynamics. vector [0, 0, 0] Element is rotating with angular _velocity around

axis_position

axis_position.

Observable FieldVariables:

The following values can be measured with a FieldVariableElementSensor, [3.9.1l The sensor
needs 2 informations: the field variable itself and the component. For more information see

section [B.1]

] field variable

possible components

position X, y, z, magnitude

displacement, X, y, z, magnitude

velocity X, ¥, z, magnitude, x, y, z, magnitude
stress XX, Xy, XZ, VY, YZ, 27, magnitude
stress__cauchy XX, Xy, Xz, VY, Yz, 2z, magnitude

stress _mises

total strain

XX7 XY’

Xz, VY, Yz, 2z, magnitude

logarithmic strain

XX7 Xy7

Xz, VY, Yz, 2z, magnitude

Observable special values:

For more information see section B.1]

] value name

\ description

172 CHAPTER 3. HOTINT REFERENCE MANUAL

Internal.volume volume of an element
Internal.potential _energy potential (strain) energy of an element
Internal.kinetic__energy kinetic energy of an element

Suitable Connectors:

The following connectors can be used to constrain the element:

PointJoint, CoordinateConstraint, VelocityCoordinateConstraint, [3.3.3] Multi-
CoordConstraint, Rope3D, [3.3.7 FrictionConstraint, Contact1D, [3.3.9] PlaneCon-
straint, SpringDamperActuator, RigidLink,

3.3. CONNECTOR 173

3.3 Connector

These connectors are available:

e PointJoint,
CoordinateConstraint,

e VelocityCoordinateConstraint,
e MultiCoordConstraint,

e SlidingPointJoint,

o SlidingPrismaticJoint,

e Rope3D, 3.3.7]

e FrictionConstraint,

e Contact1D,

e PlaneConstraint,

e GenericBodyJoint,

e RevoluteJoint,

e PrismaticJoint,

e UniversalJoint, [3.3.14]

e RigidJoint, [3.3.15]

e CylindricalJoint, [3.3.16]

e SpringDamperActuator,

e RigidLink,

e RotatorySpringDamperActuator,
e SpringDamperActuator2D, [3.3.20

e PointJoint2D, [3.3.21

Note:

In HOTINT several classes are treated as ’elements’. Connectors and control elements are also
‘elements’, and can therefore be edited and deleted in the GUI with the menu items of the
elements.

In the script language the command AddConnector has to be used for the connectors in the list
above and also for control elements.

174 CHAPTER 3. HOTINT REFERENCE MANUAL

3.3.1 PointJoint
Short description

The PointJoint constrains two elements at a local position or node each. If only one element
is specified (second element 0), a ground PointJoint is realized. Tt is possible to constrain just
some of the directions. If the first body is a rigid body then the constraint forces are applied
as follows:

Connecting element to element:
The constraint forces are applied on both bodies at the position of the connection point of the
second body.

Connecting element to ground:
The constraint forces are applied on the body

e at the position of the connection point on ground if the formulation is penalty and use local coordinate
and

e at the position of the connection point of the element otherwise.

If the first element is a flexible body or a point mass the forces are applied differently. See
Limitations.

Equations

Lagrange formulation:
The constraint equations are
C: AT(Xl—Xg) =0

or on velocity level ‘
C= AT (x; —x)+ AT (vi —vy) =0

where each equation corresponds to a constrained direction.
The meaning of the variables is as follows:

x; position of connection point on body 1 in global coordinates
Xy position of connection point on body 2 in global coordinates,
or if constraint connects element to ground then connection point
of ground in global coordinates
v, time derivative of x;
v, time derivative of xo
A rotation matrix from local joint coordinates to global coordinates.
If Geometry.use local coordinate system = 1 and
Geometry.use joint local frame = 1, then A = QJ.
If Geometry.use local coordinate system = 1 and
Geometry.use joint local frame = 0, then A = Q.
If Geometry.use local coordinate system = 0 and
Geometry.use joint local frame = 1, then A = J.
If Geometry.use local coordinate system — 0 and
Geometry.use joint local frame = 0, then A =L
rotation matrix from local coordinate system of body 1 to global coordinates
joint local frame

=0

3.3. CONNECTOR 175

Penalty formulation:
The spring force is given by

k. 0 0
fs =A 0 k'y 0 AT : (XQ - Xl)
0 0

k.

and the damper force by
fd:d'<V2—V1).

The resulting constraint force is then given by
f=1 +1£,.

Where

constraint force due to stiffness
constraint force due to damping,
constraint force

stiffness in (local or global) z-direction
stiffness in (local or global) y-direction
stiffness in (local or global) z-direction
damping coefficient

el

83

&N@N@"h

Limitations

In general the constraint forces act on the first body not at the position of the connection point
of the first body.

If the first body is a rigid body, then the force acting on body 1 is shifted to the connection
point of the first body. The moment induced by shifting the force is compensated by a moment
in the opposite direction.

If the first body is a point mass, we cannot apply a force outside it’s position.

If the first body is a flexible body, applying a force outside the connection point is at least very
questionable.

Hence the PointJoint has the following limitations:

e [t is not possible to use the PointJoint in Lagrangian formulation if not all directions are
constrained and the first body is a point mass or a flexible body.

e When using the PointJoint in penalty formulation with body 1 being a point joint or a flexible
body, the constraint force acting on body 1 is applied at the position of the connection point
of body 1. If the constraint forces are not collinear to connection points, e.g. if the stiffness
is unisotropic or if a damping is set, then the shifting the force induces a moment. This
moment is not compensated and thus the law of angular momentum is broken. Therefore
a PointJoint in penalty formulation should only be used with a point masses or a flexible
bodies being the first element, if you expect small displacements or the constraint forces to
be (nearly) collinear to the connection points.

Another limitations, which applies for all kinds of bodies, is that it is not possible in Lagrange
formulation to constraint just some global directions.

176 CHAPTER 3. HOTINT REFERENCE MANUAL

Description of the different modi

3.3. CONNECTOR 177

element to ground Position2.element number AND Posi-
tion2.node number have to be equal to 0

element to element Position2.element__number and/or Posi-
tion2.node number must not be equal to 0

Lagrange If Physics.use penalty formulation = 0, then no
stiffness and no damping parameters are used.

i
k
R
\\ ')
3TN fi 13
‘\X1? 7\ "
~:—
v
i
£
first body :
(J
£ £
second body

Figure 3.29: The penalty forces acting on the first body (dotted) act on the position of xs. The
forces acting on the first body are shifted to x; (dashed) and a moment (dashed) is applied to
compensate the induced moment.

Data objects of PointJoint:

] Data name \ type \ R \ default description

element_type string "PointJoint" specification of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "PointJoint" name of the element

element number integer R 2 number of the element in the mbs

Graphics

Graphics.RGB _ color vector [0.3, 0.8, 0.3] [red, green, blue| color of element, range = 0..1,
use default color:[-1,-1,-1]

Graphics.show connector | bool 1 Flag to draw connector

Graphics.draw _size double -1 drawing dimensions of constraint. If set to -1,
then global draw_scalar_size is used.

Graphics. double 0 drawing dimensions of joint local frame. If set to

draw_size joint local frame -1, then global draw scalar size is used. If set
to 0, then no joint local frame is drawn.

Geometry

Geometry. bool 0 Use a special joint local frame

use_joint_local frame

Geometry. matrix [0, 0, 0; 0, 0, 0;

joint _local frame 0, 0, 0] Rotates the local or global coordinate system.
Just used if use joint local frame ——

Geometry. bool 0 O=use global coordinates, 1=use local coordinate

use local coordinate system system of Body 1

Physics

178 CHAPTER 3. HOTINT REFERENCE MANUAL
Physics. bool 0 0 = use lagrange multipliers (index 3 DAE, ex-
use_penalty formulation act), 1 = use penalty formulation (no additional
equation added, approximate constraint)

Physics.Penalty

Physics.Penalty. double 0 general or penalty stiffness parameter

spring _stiffness

Physics.Penalty. vector [0, 0, O] penalty stiffness parameter [kxkykz]. Just

spring stiffness vector used if scalar spring stiffness == 0, otherwise
kx=ky=kz=spring_stiffness

Physics.Penalty.damping double 0 damping coefficient for viscous damping (F =
d*v), applied in all constrained directions

Physics.Lagrange

Physics.Lagrange. vector [1, 1, 1] [x,y,2]...(1 = constrained, 0 = free), can be defined

constrained _directions as local or global directions (see Geometry)

Positionl

Position1. integer 1 Number of constrained element

element number

Position1.position vector [0, 0, O] local position. Only used if node number == 0!

Positionl.node number integer 0 local or global (if element number == 0) node
number.

Position2

Position2. integer 0 Number of constrained element

element number

Position2.position vector [0, 0, 0] local or global (if element number == 0) posi-
tion. Only used if node number == 0!

Position2.node number integer 0 local or global (if element number == 0) node
number.

Observable special values:

For more information see section 3.1]
value name description

Internal. DOF

degrees of freedom (or generalized unknowns) of the
element. range: 1-3

Internal.algebraic variable

algebraic variables of the element. range: 1-3

Connector.force

force applied to the kinematic pairs due to the con-
nector. range: 1-3, corresponds to force in global
x-y-z direction

Controllable special values:

For more information see section B.1]

value name

description

Connector.stiffness

Set the stiffness coefficient

Connector.damping

Set the damping coefficient

3.3. CONNECTOR 179

Example

see file PointJointShort.txt

1=1%m

g =9.81 % m/s"2

gravLoad

{
load_type = "Gravity"
direction = 3 ¥ z - direction

gravity_constant = g

}
nLoad = AddLoad(gravLoad)

rigidBody
{
element_type= "Rigid3D"
loads= [nLoad]
Graphics.body_dimensions= [1, 0.05, 0.05]
}
nRigid = AddElement(rigidBody)

pointJoint

{
element_type= "PointJoint"
Positionl
{
element_number= nRigid %number of constrained element
position= [-1/2, 0, 0] %local position
}
Position2.position= [-1/2, 0, 0]
}
AddConnector(pointJoint)

3.3.2 CoordinateConstraint
Short description

The CoordinateConstraint constrains two elements by constraining a single coordinate of each
element, e.g. the x-displacement of two different elements. If the second element number is zero,
a groundjoint can be realized. The CoordinateConstraint uses the lagrange multiplier formula-
tion by default, which means that there is no constraint violation at all. For static problems,
the lagrange multiplier constraint formulation is applied directly, by adding the kinematical
conditions to the nonlinear system equations. In dynamic (time dependent) simulations, the
constraint is solved on the position (displacement) levelwith index 3 solvers and on the velocity
level with index 2 solvers. Alternatively, the penalty formulation can be used, which means
that a certain (very high) spring stiffness is used instead of lagrange multipliers. Thus, no
additional equation is added, however, the systemequations may become unsolvable stiff (ill
conditioned) in case of static problems; for dynamical problems, the very high stiffness might
lead to high-frequency oscillations, inaccurate solutions or no convergence.

180 CHAPTER 3. HOTINT REFERENCE MANUAL

Equations

Lagrange formulation:

position constraint (index 3 solver)

2 elements (coordinate to coordinate): C' =k (g
1 element (coordinate to ground): C = k (g

ell — 7l)

(el2 qJelg) d=0

qill) =0

velocity constraint - index reduction (index 2 solver)
2 elements (coordinate to coordinate): C'= k¢ — 5 =0,

1 element (coordinate to ground): C' = ¢t =

Langrange multiplier

;ﬁ;Tzz[o 0,k,0...0] ... with k at index i
2 =10..0,-1,0..... 0] ... with —1 at index j

Penalty formulation:

2 elements (coordinate to coordinate): f = Sp (k (¢¢"' — ¢f}) — (45 — ¢55) — d)+Dp (k¢" —

1 element (coordinate to ground): f = Sp (k (¢

Description:
k ... coordinate gain factor

ell qfl1)>

Cl) +D kqell

d ... coordinate offset (for index 2 solvers not used)

¢! ... it coordinate of element 1
i S =0
qel2 .. gt coordlnate of element 2

ﬁ%—ﬁ”@—@

Sp ... spring stlffness
Dp ... damping

C ... Lagrange equation
f ... force vector (penalty formulation)

Description of the different modi

h coordinate of element 1 at initialization

h coordinate of element 2 at initialization

coordinate to ground

Coordinate2.element number AND Coordi-
nate2.local coordinate have to be equal to 0

coordinate to coordinate

Coordinate2.element _number and/or Coordi-
nate2.local coordinate must not be equal to
0

Lagrange

For Physics.use_penalty formulation = 0 no stiff-
ness parameter is used.

relative or absolute to initial values

Only important for max index 3 solvers.

If relative to inital values is set to 1: Equation
above is used.

If set to 0: Simplified equation is used (qffol =q5 =
0).

)

Data objects of CoordinateConstraint:

3.3. CONNECTOR 181

| Data name | type | R | default description

element type string "CoordinateConstraint"
specification of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "CoordinateConstraint"
name of the element

element number integer R |2 number of the element in the mbs

Graphics

Graphics.RGB _ color vector [0.3, 0.8, 0.3] [red, green, blue| color of element, range = 0..1,
use default color:[-1,-1,-1]

Graphics.show connector | bool 1 Flag to draw connector

Graphics.draw _size double 0.1 General drawing size of constraint

Physics

Physics. bool 0 0 = use lagrange multipliers (index 3 DAE, ex-

use_penalty formulation act), 1 = use penalty formulation (no additional
equation added, approximate constraint)

Physics.Penalty

Physics.Penalty.damping double 0 damping coefficient Dp for viscous damping

Physics.Penalty. double 0 general or penalty stiffness parameter Sp

spring_ stiffness

coord _offset double 0 coordinate offset d, see documentation section
equation

coord _gain_factor double 1 coordinate gain factor k, see documentation
section equation

relative to_initial values | bool 1 flag == 1: full equation is used, see documenta-
tion; flag == 0: the init state values qi0 and qjO
are neglected.

Coordinatel

Coordinatel. integer 0 element number for coordinate 1

element number

Coordinatel. integer 0 Local coordinate of element 1 to be constrained

local _coordinate

Coordinate2

Coordinate2. integer 0 element number for coordinate 2; for ground

element number joint, set element number to zero

Coordinate2. integer 0 Local coordinate of element 2 to be constrained

local _coordinate

Observable special values:

For more information see section B.1]

value name

Internal. DOF

description
degrees of freedom (or generalized unknowns) of the
element. range: 1-1

Internal.algebraic_variable

algebraic variables of the element. range: 1-1

Connector.CoordinateConstraint.generalized force

force acting on the generalized coordinates

Connector.CoordinateConstraint.coordinate differen

redifference between the coordinates

Connector.CoordinateConstraint.coordinate offset

coordiante offset for CoordinateConstraint (w.r.t.
ground or between two element coordinates); offset
is ignored for Index 2 (setting of time integration)
velocity level constraint

Connector.CoordinateConstraint.gain _factor

coordiante gain factor for CoordinateConstraint

182 CHAPTER 3. HOTINT REFERENCE MANUAL

Controllable special values:

For more information see section

value name description
Connector.CoordinateConstraint.coordinate _offset | coordiante offset for CoordinateConstraint (w.r.t.
ground or between two element coordinates); offset
is ignored for Index 2 (setting of time integration)
velocity level constraint
Connector.CoordinateConstraint.gain _factor coordiante gain factor for CoordinateConstraint

Example

see file CoordinateCounstraint.txt

1=1%m
rigidBody
{

element_type= "Rigid3D"
Graphics.body_dimensions= [1, 0.05, 0.05]
}
nRigid = AddElement (rigidBody)

coordinateConstraint

{
element_type= "CoordinateConstraint"
Coordinatel
{
element_number= nRigid %element number for coordinate 1
local_coordinate= 1 %local coordinate of element 1
}
by

AddConnector (coordinateConstraint)

3.3.3 VelocityCoordinateConstraint

Short description

Similar to CoordinateConstraint. Lagrangian constraint implemented for index 3 and index 2
solvers. A penalty formulation is also implemented.

Equations

Lagrange formulation:

velocity constraint (index 2 and 3 solvers)

2 elements (coordinate to coordinate): C' =k (¢ — &) — (¢52 — ¢55) —d =0,

1 element (coordinate to ground): C' =k (¢ —¢fh) —d =0

3.3. CONNECTOR

Langrange multiplier

aCT:[O O7k70‘

ac'lell

20T =10..0,-1,0...

a('lel2

Penalty formulation:

183

0] ... with &k at index i

..... 0 ..

with —1 at index j

2 elements (coordinate to coordinate): f = Sp (k (¢ — ¢5) — (¢52 — ¢5%) — d)
1 element (coordinate to ground): f = Sp (k (¢ — ¢4)) — d)

Description:

k ... coordinate velocity gain factor

d ... coordinate velocity offset

ell th
q;" -1
cell cell

coordinate velocity of element 1

fo =4 (t=0) ... i" coordinate velocity of element 1 at initialization

-el2 th
q] e
cel2 -el2

. j"" coordinate velocity of element 2

@56 = ¢ (t =0) ... j" coordinate velocity of element 2 at initialization

Sp ... spring stiffness

C ... Lagrange equation

f ... force vector (penalty formulation)

Description of the different modi

coordinate to ground

Coordinate2.element number AND Coordi-
nate2.local coordinate have to be equal to 0

coordinate to coordinate

Coordinate2.element _number and/or Coordi-
nate2.local coordinate must not be equal to
0

relative or absolute to initial values

If relative to inital values is set to 1: Equation
above is used.

If set to 0: Simplified equation is used (zjf’lol =qj
0).

Data objects of VelocityCoordinateConstraint:

] Data name \ type \ R \ default description

element type string "VelocityCoordinateConstraint"
specification of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "VelocityCoordinateConstraint"
name of the element

element number integer R |2 number of the element in the mbs

Graphics

Graphics.RGB _ color vector [0.3, 0.8, 0.3] [red, green, blue| color of element, range = 0..1,
use default color:[-1,-1,-1]

Graphics.show _connector | bool 1 Flag to draw connector

Graphics.draw _size double 0.1 General drawing size of constraint

Physics

Physics. bool 0 0 — use lagrange multipliers (index 3 DAE, ex-

use_penalty formulation act), 1 = use penalty formulation (no additional
equation added, approximate constraint)

184 CHAPTER 3. HOTINT REFERENCE MANUAL

Physics.Penalty

Physics.Penalty. double 0 general or penalty stiffness parameter Sp

spring _stiffness

coord _ offset double 0 coordinate offset d, see documentation section
equation

coord _gain_factor double 1 coordinate gain factor k, see documentation
section equation

relative to initial values | bool 1 flag —= 1: full equation is used, see documen-
tation; flag == 0: the init state derivatives
d(qi0)/dt and d(qj0)/dt are neglected.

Coordinatel

Coordinatel. integer 0 element number for coordinate 1

element number

Coordinatel. integer 0 Local coordinate of element 1 to be constrained

local _coordinate

Coordinate2

Coordinate2. integer 0 element number for coordinate 2; for ground

element number joint, set element number to zero

Coordinate?2. integer 0 Local coordinate of element 2 to be constrained

local _coordinate

Observable special values:

For more information see section B.1]

value name

description

Internal. DOF

degrees of freedom (or generalized unknowns) of the
element. range: 1-1

Internal.algebraic_variable

algebraic variables of the element. range: 1-1

Connector.CoordinateConstraint.generalized force

force acting on the generalized coordinates

Connector.CoordinateConstraint.coordinate differen

edifference between the coordinates

Connector.CoordinateConstraint.coordinate offset

coordiante offset for CoordinateConstraint (w.r.t.
ground or between two element coordinates); offset
is ignored for Index 2 (setting of time integration)
velocity level constraint

Connector.CoordinateConstraint.gain _factor

coordiante gain factor for CoordinateConstraint

Controllable special values:

For more information see section B.1]

value name

description

Connector.CoordinateConstraint.coordinate _offset

coordiante offset for CoordinateConstraint (w.r.t.
ground or between two element coordinates); offset
is ignored for Index 2 (setting of time integration)
velocity level constraint

Connector.CoordinateConstraint.gain _factor

coordiante gain factor for CoordinateConstraint

3.3. CONNECTOR 185

Example

see file VelocityCoordinateConstraint.txt

l1=1%m
rigidBody
{

element_type= "Rigid3D"
Graphics.body_dimensions= [1, 0.05, 0.05]

}
nRigid = AddElement (rigidBody)

coordinateConstraint

{
element_type= "VelocityCoordinateConstraint"
Coordinatel
{
element_number= nRigid ‘element number for coordinate 1
local_coordinate= 1 %local coordinate of element 1
}
by

AddConnector(coordinateConstraint)

3.3.4 MultiCoordConstraint
Short description

The MultiCoordConstraint is an extension of CoordinateConstraint and constrains more than
two elements.Only the lagrange multiplier formulation is implemented and no penalty formu-
lation.

Equations
position constraint (index 3 solver)
C' =k (g5 — ¢io) — k2 (455° — 455%) — ks —d =0

velocity constraint - index reduction (index 2 solver)
C =k ¢ — ko? — k... = 0

Langrange multiplier
first element:

e (U 0, k1,0...0] ... with k; at index cl
i-th %lement:

321—% =[0...0,—k;,0......... 0] ... with —k; at index ci
Description:

k1, ko, ..., k; ... coordinate gain factors

d ... coordinate offset (for index 2 solvers not used)

¢ ... ¢i™ coordinate of element j

q;ljo = ¢ (t = 0) ... e coordinate of element j at initialization
C ... Lagrange equation

186

CHAPTER 3. HOTINT REFERENCE MANUAL

Description of the different modi

relative or absolute to initial values

Only important for max index 3 solvers.

If relative to_inital values is set to 1: Equation
above is used.

If set to 0: Simplified equation is used (¢g1,p = ¢ o =
.. =0).

ell el2

. r

Figure 3.30: 3 point masses are constrained to each other with MultiCoordConstraints to obtain
the same behaviour as a rigid body, see the provided example code.

Data objects of MultiCoordConstraint:

’ Data name ‘ type ‘ R ‘ default description

element type string "MultiCoordConstraint"
specification of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "MultiCoordConstraint"
name of the element

element _number integer R 2 number of the element in the mbs

Graphics

Graphics.RGB __color vector [0.3, 0.8, 0.3] [red, green, blue] color of element, range = 0..1,
use default color:[-1,-1,-1]

Graphics.show connector | bool 1 Flag to draw connector

Graphics.draw _size double 0.1 General drawing size of constraint

element numbers vector element numbers to constrain

local _coordinates vector local coordinates of elements to be constrained

coord gain_factors vector coordinate gain factor k for each element, see do-
cumentation section equation

coord _offset double 0 coordinate offset d, see documentation section
equation

relative to_ initial values | bool 1 flag == 1: full equation is used, see documenta-
tion; flag == 0: the init state values qi0 and qjO
are neglected.

3.3. CONNECTOR

Observable special values:

187

For more information see section

value name

description

Internal. DOF

degrees of freedom (or generalized unknowns) of the
element. range: 1-1

Internal.algebraic variable

algebraic variables of the element. range: 1-1

Example

see file MultiCoordinateConstraint.txt

r = 0.1

m_outer =

% [m] distance between point masses
m_center = 2 % [kgl mass of p

0.5 % [kgl mass of p

Force.load_type= "ForceVector2D"
Force.force_vector= [0,1]
Force.position= [0, 0]

nLoad = AddLoad(Force)

PointMass.
PointMass
PointMass
PointMass.
PointMass.

element_type= "Mass2D"

.loads= [] % no
.Graphics.radius= r/10

Initialization.initial
Physics.mass= m_outer

nE_mLeft=AddElement (PointMass)

PointMass.

loads= [nLoad]

oint mass in the center
oint mass at the outer edges

load at left mass

_position= [0, 0]

% force vector acting on right mass

PointMass.Initialization.initial_position= [2#*r, 0]

nE_mRight=

PointMass.

AddElement (PointMass)

loads= [] % no

load at the center mass

PointMass.Initialization.initial_position= [r, O]

PointMass.

Physics.mass= m_center

nE_mCenter=AddElement (PointMass)

MultiCC
{

element_type= "MultiCoordConstraint"
Graphics.draw_size = r/10
element_numbers= [nE_mCenter,nE_mLeft,nE_mRight]
local_coordinates= [1,1,1]
coord_gain_factors= [1,0.5,0.5] % x of center mass is average of outer masses

}

AddConnector (MultiCC)

% constrain x-directions

MultiCC.local_coordinates= [2,2,2] ¥ constrain y-directions
AddConnector (MultiCC)

188 CHAPTER 3. HOTINT REFERENCE MANUAL

ConstLength

{
element_type= "SpringDamperActuator2D"
Graphics.show_connector = 0O
Physics.spring_length= r % keep the distance constant
Physics.Linear.spring_stiffness= 1000 % high stiffness
Physics.Linear.damping= 10 % sufficient damping
Positionl.element_number= nE_mCenter % center - left
Position2.element_number= nE_mLeft

}

AddConnector(ConstLength)

ConstLength.Position2.element_number= nE_mRight % center - right
AddConnector (ConstLength)

% compare with rigid body formulation (reference solution)
Force.name= "Load for Rigid"

Force.position= [r, 0] % local position of load is different
nLoadRigid = AddLoad(Force)

RigidBody.element_type= "Rigid2D"

RigidBody.loads= [nLoadRigid]

RigidBody.Graphics.body_dimensions= [2*r, r/10, r/10]
RigidBody.Graphics.RGB_color = [0.1,0.8,0.8]
RigidBody.Physics.moment_of_inertia= 2#m_outer*r*r ¥ [I_ZZ]
RigidBody.Physics.mass= 2*m_outer+m_center % total mass of the body in kg
RigidBody.Initialization.initial_position= [r, O]

AddElement (RigidBody)

3.3.5 SlidingPointJoint
Short description

This joint enables sliding of a fixed point of a body i along the x - axis of another body j. Both
body i and body j can be flexible or rigid. Body j can contain more than one elements. No
rotations are constrained at all. Only a Lagrangian formulation is implemented, the penalty
formulation is not implemented yet. A MaxIndex 2 and 3 formulation exists.

Degrees of freedom

The vector of the DOF contains the sliding parameter s, its time derivative s and the vector of
the Lagrangian parameters A = [)\1>\2)\3]T. The Lagrange parameters \; to A3 are representing
the sliding forces in the global coordinate system.

a =[5 § M XN /\3]T (3.15)

Equations

positions:

x' = [} 2} ZL’%]T (3.16)

3.3. CONNECTOR 189

. - - . T
x' = [2]=s5 2} 23] (3.17)
constraint equation - position level

r' (x) — r’ (x/)
C = o () =0 (3.18)

J
Oxy

The first three constraints restrict the motion of the sliding point on body ¢ and j. The fourth
constraint equation ensures, that there is no force in the sliding direction.

constraint equation - velocity level:

aria(xi) . rj(axj) _ rj(x.j)(é

¢ ¢ 27

C = o o =0 (3.19)
ar](xj))\

J
Oxy

To obtain the constraints for velocity level, the first three equations are differentiated with
respect to time. The sliding parameter s is also a function of time. The fourth constraint
equation is equal to the position level equation.

Description of the different modi

sliding along a single body The vector Geomety.element numbers is equal to
[enl, en2]. Index Geomety.elemind must be 1.
sliding along more than one body Geomety.element numbers has to be set to

[enl,en2q,en2s,...,en2,]. Geomety.elemind is the
body j index of the element in inital configuration,
e.g. for en25 the elemind is 2.

'\\‘\o\’\,2 p
ents 10 \ 2
N
trom first P27 yiding PO !
4

me\\’\’pos

en2_2
Geometry.elemind = 2

enl

Figure 3.31: SlidingPointJoint

Data objects of SlidingPointJoint:

190 CHAPTER 3. HOTINT REFERENCE MANUAL
| Data name type | R | default description

element type string "SlidingPointJoint"
specification of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "SlidingPointJoint"
name of the element

element number integer R |2 number of the element in the mbs

Graphics

Graphics.RGB _ color vector [0.3, 0.8, 0.3] [red, green, blue| color of element, range = 0..1,
use default color:[-1,-1,-1]

Graphics.show connector | bool 1 Flag to draw connector

Graphics.draw _size double -1 Drawing dimensions of constraint. If set to -1,
then global draw _scalar _size is used.

Geometry

Geometry.elemind integer 1 Index of the initial sliding body.

Geometry.position 1 vector [0, 0, 0] Vector from the center of body number 1 (enl) to
the sliding point in the local body 1 coordinate
system.

Geometry.position 2 vector [0, 0, 0] Vector from the center of the first body of en2 ar-
ray to the sliding point in the local body 2 coor-
dinate system.

Geometry. vector [1, 2] Element numbers: [enl,en2 1,en2 2,....en2 n].

element numbers

Observable special values:
For more information see section 3.1]
value name description

Internal. DOF

degrees of freedom (or generalized unknowns) of the
element. range: 1-5

Internal.first _order variable

first order variables of the element. range: 1-1

Internal.algebraic_variable

algebraic variables of the element. range: 1-4

Connector.force

force applied to the kinematic pairs due to the con-
nector.
x-y-z direction

range: 1-3 corresponds to force in global

Example

see file SlidingPointJoint.txt

1
k

1 %m

load % define the load

{

load_type = "ForceVector3D"

position = [1/2,0,0]

0.02 %nominal value k=1; decreased stiffness for demonstration!

force_vector = [0,0,1000] % magnitude and direction

}

3.3. CONNECTOR 191

nLoad=AddLoad (1load)

material
{
material_type = "Beam3DProperties"
cross_section_type = 1 % rectangular cross section
cross_section_size = [0.05,0.1]
density = 7850 %kg/m"3
EA = 2100000000k %N
EIy = 1750000%k %Nm~2
EIz = 1750000%k %Nm~2
GAky = 800000000%k %N
GAkz = 800000000xk %N
GJkx = 500000000%k ¥%N*m~2
RhoA = 78.5 %kg/m~2
RhoIx = 0.1 %kg+*m
Rholy = 0.1 %kg+*m
RholIz = 0.1 %kg+*m

3

nMaterial = AddBeamProperties(material)

node

{
node_type = "Node3DRxyz"

¥
nl = AddNode(node)

node.Geometry.reference_position [1/2,0,0]

n2 = AddNode(node)

node.Geometry.reference_position [1,0,0]

n3 = AddNode(node)

node.Geometry.reference_position = [3*1/4,0,0]
node.Geometry.reference_rot_angles = [0,-Pi/2,0] %bryant angles
n4d = AddNode(node)

node.Geometry.reference_position = [3*1/4,0,1]
n5 = AddNode(node)

beam

{
element_type= "LinearBeam3D"
Physics.material_number = nMaterial
Geometry.node_1 = nil
Geometry.node_2 = n2

¥
nBeaml12 = AddElement (beam)

beam.Geometry.node_1 = n2
beam.Geometry.node_2 = n3
nBeam23 = AddElement (beam)

192 CHAPTER 3. HOTINT REFERENCE MANUAL

beam.loads = [nLoad]

beam.Geometry.node_1 = n4
beam.Geometry.node_2 = nb
nBeam45 = AddElement (beam)

slidingJoint

{
element_type = "SlidingPointJoint"
Geometry

{
elemind = 2 Ynumber of the initial sliding body (2nd body).
position_1 = [-1/2, 0, O]
%vector from the center of body number 1 (enl) to the sliding point
%in the local body 1 coordinate system.
position_2 = [1/2, 0, 0] Yvector from the center of the first body
%of en2 array to the sliding point in the local body 2 coordinate system.
element_numbers = [nBeam45, nBeaml2,nBeam23]
%Element numbers: [enl, en2_1,en2_2].
}
}
AddConnector(slidingJoint)

rigidJoint
{
element_type= "RigidJoint"
Positionl
{
element_number= nBeaml12 Yconstrained element
position= [-1/4, 0, 0] %local position.
}
}
AddConnector(rigidJoint)

3.3.6 SlidingPrismaticJoint
Short description

This joint enables sliding of a fixed point of a body i along the x - axis of another body j.
Both body i and body j can be flexible or rigid. Body j can contain more than one element.
The difference to the SlidingPointJoint is that the relative rotation between the bodies is
also constrained. A Lagrangian formulation is used for both stiff and springy constrained
rotation. For the position constraint only a stiff formulation exists. A penalty formulation is
not implemented yet. There is a MaxIndex 2 and 3 formulation implemented.

Degrees of freedom

The vector of the DOF contains the sliding parameter s, its time derivative s and the vector of
the Lagrangian parameters A = [)\1>\2)\3]T. The Lagrange parameters \; to A3 are representing
the sliding forces in the global coordinate system. The three Lagrangian parameters \y to Ag
are the sliding moments about the global coordinate system axes.

q =[5 5 M X X M X)\G}T (3.20)

3.3. CONNECTOR

Equations

193

At initialization the unit vectors of the global coordinate system are transformed to the local
coordinate system of each body and the vectors vi, v and v for body i and v?, v} and v}
for body j are obtained. The vectors are fixed in the body coordinate system. The position
vectors are the same as for the SlidingPointJoint.

constraint equation - position level (stiff connection)

() 1 ()
orJ (xj)

az{

vivi

I
ViV

J<ri
VaoVi

constraint equation - position level (springy connection)

r' (x') — 1/ (x7)
ori (1)
oz}

Viviky + (VivE + vivi) di + Ay

A

Vivik 4+ (Vivi +vivi) dy + A

Jsi o0 < VX

constraint equation - velocity level (stiff connection)

() w(e) w(),]

ot ot ox]

o ()

ox?
O J i
V5V3 + VyVg

) Joi
V3V + V3V

) EX
VyVvi + Vv

constraint equation - velocity level (springy connection)

ilx) _w(e) _pe),

ot ot ax{

orJ (xj) A\

J
Oy

vivik + (V%Vé + V*;vg) dy + My
vivik + (Vévl1 + V%Vll) dy + As

J st & J J i
—viviky — (VIVE 4+ vivi) ds + Ag

Description of the different modi

(3.21)

(3.22)

(3.23)

(3.24)

194

CHAPTER 3. HOTINT REFERENCE MANUAL

sliding along a single body

The vector Geomety.element numbers is equal to
[enl,en2]. Index Geomety.elemind must be 1.

sliding along more than one body

Geomety.element numbers has to be set to
[enl, en2q,en2s,...,en2,]. Geomety.elemind is the
body j index of the element in inital configuration,

e.g. for en2sy the elemind is 2.

stiff constrained rotation

Physics.use _penalty formulation is set to 0.

springy constrained rotation

Physics.use penalty formulation is set to 1. The
values for stiffness and damping must be set in Phy-
sics.Penalty folder.

Data objects of SlidingPrismaticJoint:

‘ Data name ‘ type ‘ R ‘ default description

element type string "SlidingPrismaticJoint"
specification of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "SlidingPrismaticJoint"
name of the element

element number integer 2 number of the element in the mbs

Graphics

Graphics.RGB _color vector [0.3, 0.8, 0.3] [red, green, blue] color of element, range = 0..1,
use default color:[-1,-1,-1]

Graphics.show connector | bool 1 Flag to draw connector

Graphics.draw _size double -1 Drawing dimensions of constraint. If set to -1,
then global draw_scalar_size is used.

Geometry

Geometry.position 1 vector [0, 0, 0] Vector from the center of body number 1 (enl) to
the sliding point in the local body 1 coordinate
system.

Geometry.position 2 vector [0, 0, 0] Vector from the center of the first body of en2 ar-
ray to the sliding point in the local body 2 coor-
dinate system.

Geometry. vector (1, 2] Element numbers: [enl,en2 1,en2 2,...en2 n].

element numbers

Geometry.elemind integer 1 Index of the initial sliding body.

Physics

Physics. bool 1 0 = use lagrange multipliers (index 3 DAE, ex-

use_penalty formulation act), 1 = use penalty formulation (no additional
equation added, approximate constraint)

Physics.Penalty

Physics.Penalty.k1 double 1e+005 Stiffness for rotation about global x - axis.

Physics.Penalty.k2 double 1le+005 Stiffness for rotation about global y - axis.

Physics.Penalty.k3 double 1le+005 Stiffness for rotation about global z - axis.

Physics.Penalty.d1 double 100 Damping of rotation about global x - axis.

Physics.Penalty.d2 double 100 Damping of rotation about global x - axis.

Physics.Penalty.d3 double 100 Damping of rotation about global x - axis.

Observable special values:

For more information see section B.1]

3.3. CONNECTOR 195

value name description

Internal. DOF degrees of freedom (or generalized unknowns) of the
element. range: 1-8

Internal.first _order variable first order variables of the element. range: 1-1

Internal.algebraic_variable algebraic variables of the element. range: 1-7

Connector.force force applied to the kinematic pairs due to the con-

nector. range: 1-3, corresponds to force in global
x-y-z direction
Connector.SlidingPrismaticJoint.sliding parameter | internal sliding parameter s
Connector.SlidingPrismaticJoint.sliding parameter pinternal time derivative of sliding parameter s

Example

see file SlidingPrismaticJoint.txt

. copy this part from "SlidingPointJoint" example

slidingJoint

{
element_type = "SlidingPrismaticJoint"
Geometry

{
elemind = 2 Ynumber of the initial sliding body (2nd body).
position_1 = [-1/2, 0, O]
%vector from the center of body number 1 (enl) to the sliding point
%in the local body 1 coordinate system.
position_2 = [1/2, 0, 0] Yvector from the center of the first body
%of en2 array to the sliding point in the local body 2 coordinate system.
element_numbers = [nBeam45, nBeami2,nBeam23]
%Element numbers: [enl, en2_1,en2_2].
}
}
AddConnector(slidingJoint)

. copy this part from "SlidingPointJoint" example

3.3.7 Rope3D
Short description

Elastic rope that is always under tension and can be fixed to multiple bodies and ground. There
are 2 different kinds of suspensions points. Suspension points fixed on the ground are defined
with the element number 0 and the global position. Suspension points on bodies are defined
with the element number and the corresponding local position.

Limitations

The rope is assumed to be straight between 2 suspension points. No negative forces can be
transmitted by a rope. The computation of the time derivative of the length of the rope is just
an approximation. Therefore the damping of the rope may be represented slightly incorrect.

196

CHAPTER 3. HOTINT REFERENCE MANUAL

»
r
=

Figure 3.32: Point mass with rope

Data objects of Rope3D:

’ Data name ‘ type ‘ R ‘ default description
element type string "Rope3D" specification of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!
name string "Rope3D" name of the element
element number integer R |2 number of the element in the mbs
Graphics
Graphics.RGB __color vector [0.3, 0.8, 0.3] [red, green, blue] color of element, range — 0..1,
use default color:[-1,-1,-1]
Graphics.show connector | bool 1 Flag to draw connector
Graphics.draw _size double -1 drawing dimensions of constraint. If set to -1,
then global draw scalar size is used.
Geometry
Geometry.rope_length double R |1 initial length 10 of rope (computed automatically)
Geometry. vector [0, O] element numbers of the suspension points
element numbers
Geometry.positions matrix [0, 0, 0; 1, 0, O]
(local) positions of the suspension points
Physics
Physics.Penalty
Physics.Penalty.damping double 0 damping coefficient for viscous damping (F =
d*v), applied in all constrained directions
Physics.Penalty. double 0 [N] stiffness parameter c of the rope, F = ¢ * (1-
rope_ stiffness 10)/10
Physics.Penalty. double R |0 total stiffness c1 of the rope F = c1 * (1-10)
spring _stiffness
Observable special values:
For more information see section B.1]
value name description

Connector.Rope.coiled length

(additional) length of the rope that is provided by a
coil. length = rope_length + coiled length

3.3. CONNECTOR

197

Internal.data_variable

data varibales of the element which are no degrees of
freedom (e.g. inelastic strain, contact state, friction
state, etc.). range: 1-3

Connector.Rope.coiled length

(additional) length of the rope that is provided by a
coil. length = rope_length + coiled length

Connector.Rope.force

force in the rope

Connector.Rope.rope length

length of the rope

Controllable special values:

For more information see section

value name

description

Connector.Rope.coiled length

(additional) length of the rope that is provided by a
coil. length = rope length + coiled length

Connector.Rope.coiled length

(additional) length of the rope that is provided by a
coil. length = rope_length + coiled length

Example

see file Rope3D.txt

Mass

{
element_type= "Mass3D"
Physics.mass= 1

Initialization.initial_position= [0.5, 0.8, 0]

}
nMass = AddElement(Mass)

rope
{
element_type= "Rope3D"
name= "Rope3D" Yname of the element
Graphics.draw_size = 0.03
Physics
{
Penalty
{
rope_stiffness= le3
damping= 10
X
}
Geometry

{

element_numbers= [0, O, nMass, O] Jelement numbers of the suspension points
positions= [0, 0.5, 0; O, 1, 0; 0,0,0; 1,1,0]

}
}
nRope = AddConnector (rope)

198 CHAPTER 3. HOTINT REFERENCE MANUAL

3.3.8 FrictionConstraint
Short description

The FrictionConstraint is acting on an arbitraty coordinate, including rotations. It can be
used to connect two elements to each other or one element to ground. Up to a specified
threshold of the force, the constraint is sticking, which is either realized by a spring-damper
formulation (penalty formulation) or with an algebraic equation (lagrange formulation). Above
this threshold, a constant friction force is applied during the sliding phase. Alternatively
sticking can be switched off and a coulomb friction force, with a transition region for very small
velocities, can be applied.

Equations

Lagrange formulation:

sticking:
position constraint (index 3 solver)

2 elements (coordinate to coordinate): C' = ¢f"' — g5 — 9 =0
1 element (coordinate to ground): C' = ¢t — 2y =0

velocity constraint - index reduction (index 2 solver)

2 elements (coordinate to coordinate): C' = ¢&! — ¢¢2 = 0,

1 element (coordinate to ground): C' = ¢t =0
sliding: C = X — puginF, =0
Penalty formulation:

sticking:
2 elements (coordinate to coordinate): Fyy = ¢ (¢f" — ¢§ —) +d (¢ —)
1 element (coordinate to ground):Fy = ¢ (¢f'* — x) + dg"*

slidmg: Fsl = [Lkan

Description:
g?t ... i'" coordinate of element 1

q;?” ... 7" coordinate of element 2

xg ... last sticking position (updated at every slide-stick transition)

Description of the different modi

sticking During sticking phase, the constraint is implemented
as spring-damper, with the force Fy;, the spring stif-
fness ¢ and the damping coefficient d or alternatively
with one algebraic equation in lagrange mode.
sliding During sliding phase, a constant friction force Fy; is
applied. F, depends on the normal force F,.If the
flag keep _sliding is active, then a transition region
for small velocities is used.

3.3. CONNECTOR 199

Additional notes

The switching from sticking phase to sliding phase is done automatically, as soon as Fg; > pugF,.
The switching to sticking phase is performed when the absolute value of the velocity v is smaller
than the specified velocity tolerance.

If the solver does not converge close to the switching points, set the solver option SolverOpti-
ons.Discontinuous.ignore _max _ iterations = 1.

If you are using index 2 solver it is advised to use RadaulTA and not LobattolIIA. LobattolITA
may lead to oscillations of the friction force and therefore unwanted stick-slip transistions.

If you are using the FrictionConstraint in order to constrain rotations, problems may occur

when the change of the angle is discontinous, e.g. if it exceeds pi/2.

A

F

st

v

sl

V<

A

sl

\ £+

tol

\/

Figure 3.33: FrictionConstraint with friction forces Fy and Fy, with sticking (left figure,
keep sliding = 0) and without sticking (right figure, keep sliding = 1).

Data objects of FrictionConstraint:

’ Data name ‘ type ‘ R ‘ default description

element_type string "FrictionConstraint"
specification of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "FrictionConstraint"
name of the element

element number integer 2 number of the element in the mbs

Graphics

Graphics.show connector | bool 1 Flag to draw connector

Graphics.draw _size double -1 Drawing dimensions of constraint. If set to -1,
then global draw_scalar_size is used.

Physics

Physics. bool 0 0 = use lagrange multipliers (index 3 DAE, ex-

use_penalty formulation act), 1 = use penalty formulation (no additional
equation added, approximate constraint)

Physics.normal force double 0 constant normal force Fn

Physics. double 1e-005 If velocity is below this value, sticking starts, or

velocity _tolerance if ’keep sliding’ is active, the transition region is
used.

Physics.fr _coeff st double 0.15 static friction coefficient, used to determine the
threshold when sliding starts.

Physics.fr _coeff kin double 0.1 kinematic friction coefficient, used to calculate
the constant force during sliding phase.

Physics.keep sliding bool 0 The constraint will never go to modus ’stick’.

Physics.Penalty

200 CHAPTER 3. HOTINT REFERENCE MANUAL

initial _sliding velocity

Physics.Penalty. double 0 spring stiffness ¢, only used during sticking phase!

spring _stiffness

Physics.Penalty.damping double 0 damping coefficient d for viscous damping, only
used during sticking phase!

Initialization

Initialization. double 0 Initial (relative) sliding velocity between the two

kinematic pairs. If absolute value is smaller than
'velocity tolerance’ then the constraint starts with

local coordinate

'sticking’.
Coordinatel
Coordinatel. integer 0 element number for coordinate 1
element number
Coordinatel. integer 1 Local coordinate of element 1 to be constrained
local coordinate
Coordinate2
Coordinate2. integer 0 element number for coordinate 2; for ground
element number joint, set element number to zero
Coordinate2. integer 1 Local coordinate of element 2 to be constrained

Observable special values:

For more information see section B.1]

value name

description

Internal. DOF

degrees of freedom (or generalized unknowns) of the
element. range: 1-1

Internal.algebraic variable

algebraic variables of the element. range: 1-1

Internal.data_variable

data varibales of the element which are no degrees of
freedom (e.g. inelastic strain, contact state, friction
state, etc.). range: 1-4

Connector.FrictionConstraint.sticking

1 if sticking, 0 if sliding

Connector.FrictionConstraint.force forward

force, applied to the kinematic pairs due to the con-
straint

Connector.FrictionConstraint.force forward abs

absolute value of the force, applied to the kinematic
pairs due to the constraint

Connector.FrictionConstraint.force normal

normal force Fn. Sliding force Fsl is directly propor-
tional to Fn.

Controllable special values:

For more information see section B.1]

value name

description

Connector.FrictionConstraint.force normal

normal force Fn. Sliding force Fsl is directly propor-
tional to Fn.

3.3. CONNECTOR 201

Example
see file FrictionConstraint.txt

force
{
load_type = "ForceVector3D"
force_vector= [1, 0, 0]
load_function_type= 1 Ytime dependency of the load: 1..MathFunction
MathFunction
{
piecewise_mode= 1 Ymodus for piecewise interpolation: 1=linear
piecewise_points= [0,0.08,0.081,0.2] Ysupporting points
piecewise_values= [0,50,-50,0] ‘values at supporting points

}
}
nLoad=AddLoad (force)
test_mass
{

element_type = "Mass3D"
Physics.mass = 1
loads=[nLoad]

}

nMass = AddElement(test_mass)

friction
{
element_type= "FrictionConstraint"
name= "FrictionConstraint"
Physics
{
normal _force= 10
fr_coeff_st= 0.15
fr_coeff_kin= 0.1
}
Coordinatel
{
element_number= nMass %element number for coordinate 1
local_coordinate= 1 ¥Local coordinate of element 1 to be constrained
}
}

nFriction=AddConnector(friction)

sensfriction
{

name= '"sticking"

sensor_type= "ElementSensor"

element_number= nFriction

value= "Connector.FrictionConstraint.sticking"
}
AddSensor (sensfriction)
sensfriction.name="friction_force"

202 CHAPTER 3. HOTINT REFERENCE MANUAL

sensfriction.value= "Connector.FrictionConstraint.force_forward"
nSensFriction = AddSensor(sensfriction)

Solver(Options

{
end_time = 0.2
TimeInt.max_step_size = le-5
Newton.relative_accuracy = 1
Newton.use_modified_newton= 1
Linalg.use_sparse_solver = 1
Discontinuous.ignore_max_iterations = 1

}

ViewingOptions.Loads.show_loads=1

3.3.9 ContactlD
Short description

Contact1D realizes a contact formulation between two elements or one element and ground.
Only one coordinate (direction) is considered per element.

Geometry

Figure |3.34] shows the meaning of the values local coordinate and position in the case of a
ground constraint. The only direction which is considered is that defined by Coordinatel.local
coordinate. Figure [3.34] shows the case for 2 elements. The value Physics.direction, dir in the
following equations, is used to define how the elements are located w.r.t. each other.
ATTENTION: Be carefull when using coordinates which do not represent a position!

Equations

Some general definitions:

pos = coordinate + localposition (3.25)
u = dir(pos; — poss) (3.26)
v = dir(vely — vely) (3.27)
Mode 1:
if u>0:
F=0 (3.28)
else:
F = dir(cu + dv) (3.29)

Description of the different modi

Mode 1 Penalty Formulation with spring and damper. The
bodies will penetrate slightly according to the spring
stiffness. Results may depend on chosen step size!
Mode 2 Lagrange Formulation (not implemented yet)

3.3. CONNECTOR 203

Coordinate1.
_— local _coordinate
A

gravity - Coordinate1.
“--7- position

Ay

~777777 & Coordinate2.
X _ position

Figure 3.34: Description of the geometry options in the case of a ground constraint.

Coordinate2.
local_coordinate

T |

Figure 3.35: Description of the geometry options in the case of 2 elements.

Data objects of Contactl1D:

’ Data name ‘ type ‘ R ‘ default description

|

element type string "Contact1D" specification of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "Contact1D" name of the element

element number integer R |2 number of the element in the mbs

Graphics

Graphics.show connector | bool 1 Flag to draw connector

Graphics.draw _size double -1 Drawing dimensions of constraint. If set to -1,
then global draw scalar _size is used.

Physics

Physics.direction double 1 Direction of the contact: +1 if the first body is
on top, or else -1

Physics.mode integer 1 mode of computation

Physics.Model

Physics.Model. double 0 spring stiffness ¢

spring _ stiffness

Physics.Model.damping double 0 damping coefficient d for viscous damping

Coordinatel

Coordinatel. integer 1 Local coordinate of element 1 to be constrained

local _coordinate

Coordinatel.position double 0 Local position at which contact occurs

Coordinatel. integer 1 element number for coordinate 1; set to zero if

element number you use nodal coordinates!

204 CHAPTER 3. HOTINT REFERENCE MANUAL
Coordinatel. integer 0 (just used if element number = 0) node number
node number for coordinate 1
Coordinate2
Coordinate2. integer 1 Local coordinate of element 2 to be constrained
local _coordinate (not used if ground constraint)
Coordinate2.position double 0 Local (or global if ground) position at which con-

tact occurs
Coordinate2. integer 0 element number for coordinate 2; for ground joint
element number or nodal coordinates, set element number to zero
Coordinate2. integer 0 (just used if element number = 0) node number
node number for coordinate 2; for ground joint, set node num-
ber to zero

Observable special values:

For more information see section [3.1
value name description

Internal. DOF

degrees of freedom (or generalized unknowns) of the
element. range: 1-2

Internal.second order variable

second order variables of the element. range: 1-1

Internal.second order variable velocity

velocities of second order variables of the element.
range: 1-1

Connector.Contact.force

the force applied to the coordinates due to the con-
tact

Example

see file Contact1D.txt

1

oad.load_type= "Gravity"

load.gravity_constant= -9.81
nLoad = AddLoad(load)

r =0.1

mass % define point mass

{

}

element_type= "Mass2D"

loads= [nLoad]
Initialization.initial_position= [1,0]
Physics.mass= 1

Graphics.radius = r

nEleml = AddElement (mass)

C

{

ontact % add contact

element_type= "ContactlD"
Graphics.draw_size = 0.01
Physics

3.3. CONNECTOR 205

{
mode= 1 % mode of computation
Model.spring_stiffness= 1le6 % spring stiffness ¢
Model.damping= 5e2 % damping coefficient d for viscous damping
}
Coordinatel
{
local_coordinate= 1 % coord 1 of element 1 is x-direction!
position= -r % offset in x-direction
element_number= nEleml % element number for coordinate 1

} % ground constraint without offset: no entries for Coordinate 2 needed

}

AddConnector(contact)

SolverOptions.Discontinuous.absolute_accuracy = 0.001
SolverOptions.end_time = 2

3.3.10 PlaneConstraint
Short description

PlaneConstraint forces a material point (given by global node number, or by element index and
local node number or local position) to reside in a given plane. The plane is defined by its unit
normal (Geometry.Plane.normal) and an arbitrary point on the plane (Geometry.Plane.ground).
If the material point is defined by a global node number, then setting penalty formulation is
mandatory!

Data objects of PlaneConstraint:

| Data name | type | R | default description

element type string "PlaneConstraint"
specification of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "PlaneConstraint"
name of the element

element number integer R 2 number of the element in the mbs

Graphics

Graphics.RGB _color vector [0.3, 0.8, 0.3] [red, green, blue] color of element, range = 0..1,
use default color:[-1,-1,-1]

Graphics.show connector | bool 1 Flag to draw connector

Geometry

Geometry. bool 0 O0=use global coordinates, 1=use local coordinate

use_local coordinate system system of Body 1

Geometry.Plane

Geometry.Plane.normal vector 0,0,1 normal of plane

Geometry.Plane.ground vector 0,0,0 arbitrary position on plane

Physics

Physics. bool 0 0 — use lagrange multipliers (index 3 DAE, ex-

use_penalty formulation act), 1 = use penalty formulation (no additional
equation added, approximate constraint)

Physics.Penalty

Physics.Penalty. double 0 general or penalty stiffness parameter

spring stiffness

Position

206 CHAPTER 3. HOTINT REFERENCE MANUAL

Position.node number integer 0 global node number if element number is 0, and
local node number else

Position.element number | integer 0 Number of constrained element

Position.local coordinate | vector [0, 0, O] local position at element, only used if node num-
ber equals 0

Observable special values:

For more information see section B.1]

value name description

Internal. DOF degrees of freedom (or generalized unknowns) of the
element. range: 1-1

Internal.algebraic variable algebraic variables of the element. range: 1-1

Internal.data_variable data varibales of the element which are no degrees of

freedom (e.g. inelastic strain, contact state, friction
state, etc.). range: 1-6

Connector.force force applied to the kinematic pairs due to the con-
nector

Controllable special values:

For more information see section [3.1]

value name description

Connector.stiffness Set the stiffness coefficient

Connector.damping Set the damping coefficient

Connector.Geometry.Plane.normal Set the damping coefficient

Connector.Geometry.Plane.ground Set the damping coefficient
Example

see file PlaneConstraintStaticsShort.txt

HOTINT _data_file_version="1.3.36"
SolverOptions.do_static_computation = 1
SolverOptions.start_time = 0
SolverOptions.end_time = 1
SolverOptions.Linalg.use_sparse_solver = 1
SolverOptions.Newton.use_modified_newton = 1

blockmaterial

{
material_type = "Material"
Solid.density = 7850
Solid.youngs_modulus = 2ell
Solid.poisson_ratio = 0.3

3.3. CONNECTOR 207

3

mnr

AddMaterial (blockmaterial)

eps = le-6
a=1
N_elems = 2

meshparameters.mesh_type = "SolidMesh"
meshparameters.mesh_name = "msh"
msh = GenerateNewMesh(meshparameters)

blockparameters
{
component_type = "Block"
Generation
{
P1 = [0,0,0]
P2 = [a,0,0]
P3 = [0,a,0]
P4 = [a,a,0]
P5 = [0,0,a]
P6 = [a,0,a]
P7 = [0,a,a]
P8 = [a,a,al]

discretization = [N_elems,N_elems,N_elems]
Material_number = mnr

msh.GenerateBlock(blockparameters)

lin2quadparams.name = "muh"
lin2quadparams.Generation.GeometricNonlinearityStatus = 2
msh.Linear2Quadratic(l,lin2quadparams)
msh.AddMeshToMBS (1)

%% BOUNDARY CONDITIONS (plane constraints only)

% === common definitions ===
uy = 0.1

p_x = a

p_y = u.y

n_xy_bot = [0,0,-1]
n_xy_top = [0,0,1]
n_yz_bot = [-1,0,0]
n_yz_top = [1,0,0]
n_xz_bot = [p_y, -p_x, 0]
n_xz_top = [-p_y, p_x, 0]
p_bot = [0,0,0]

p_top = [a, a + u_y, al

208 CHAPTER 3. HOTINT REFERENCE MANUAL

planeconstr.element_type = "PlaneConstraint"
node_set.set_type = "GlobalNodeSet"

% === xz bottom === plane constraint ===
boxparams.P1 = [-eps,-eps,-eps]
boxparams.P2 [ateps,eps,ateps]

node_set.set_name = "XZBotNodes"
node_set.global_node_numbers = msh.GetNodesInBox(boxparams)
n_node_set = AddSet(node_set)

node_set_data = AccessSet(n_node_set)
planeconstr.Geometry.Plane.ground = p_bot
planeconstr.Geometry.Plane.normal = n_xz_bot
planeconstr.Graphics.RGB_color = [0.3, 0.8, 0.3]

for(k_node=1,k_node<=cols(node_set_data.local_node_numbers),k_node=k_node+1)

{
planeconstr.Position.node_number = node_set_data.local_node_numbers[k_node]
planeconstr.Position.element_number = node_set_data.element_numbers[k_node]
AddConnector(planeconstr)

% === xz top === plane constraint ===

boxparams.P1
boxparams.P2

[-eps,a-eps,-eps]
[at+eps,ateps,ateps]

node_set.set_name = "XZTopNodes"
node_set.global_node_numbers = msh.GetNodesInBox(boxparams)
n_node_set = AddSet(node_set)

node_set_data = AccessSet(n_node_set)
planeconstr.Geometry.Plane.ground = p_top
planeconstr.Geometry.Plane.normal = n_xz_top

for(k_node=1,k_node<=cols(node_set_data.local_node_numbers) ,k_node=k_node+1)

{
planeconstr.Position.node_number = node_set_data.local_node_numbers[k_node]
planeconstr.Position.element_number = node_set_data.element_numbers[k_node]
AddConnector(planeconstr)

% === yz bottom === plane constraint ===

boxparams.P1
boxparams.P2

[-eps,-eps,-eps]
[eps,ateps,ateps]

node_set.set_name = "YZBotNodes"
node_set.global_node_numbers = msh.GetNodesInBox(boxparams)
n_node_set = AddSet(node_set)

node_set_data = AccessSet(n_node_set)
planeconstr.Geometry.Plane.ground = p_bot
planeconstr.Geometry.Plane.normal = n_yz_bot

3.3. CONNECTOR 209

planeconstr.Graphics.RGB_color = [0.8, 0.3, 0.3]

for(k_node=1,k_node<=cols(node_set_data.local_node_numbers),k_node=k_node+1)

{
planeconstr.Position.node_number = node_set_data.local_node_numbers[k_node]
planeconstr.Position.element_number = node_set_data.element_numbers[k_node]
AddConnector(planeconstr)

% === yz top === plane constraint ===

boxparams.P1
boxparams.P2

[a-eps,-eps,-eps]
[at+eps,ateps,ateps]

node_set.set_name = "YZTopNodes"
node_set.global_node_numbers = msh.GetNodesInBox(boxparams)
n_node_set = AddSet(node_set)

node_set_data = AccessSet(n_node_set)
planeconstr.Geometry.Plane.ground = p_top
planeconstr.Geometry.Plane.normal = n_yz_top

for(k_node=1,k_node<=cols(node_set_data.local_node_numbers) ,k_node=k_node+1)

{
planeconstr.Position.node_number = node_set_data.local_node_numbers[k_node]
planeconstr.Position.element_number = node_set_data.element_numbers[k_node]
AddConnector(planeconstr)

% === xy bottom === plane constraint ===

boxparams.P1 = [-eps,-eps,-eps]
boxparams.P2 = [at+eps,ateps,eps]

node_set.set_name = "XYBotNodes"
node_set.global_node_numbers = msh.GetNodesInBox(boxparams)
n_node_set = AddSet(node_set)

node_set_data = AccessSet(n_node_set)
planeconstr.Geometry.Plane.ground = p_bot
planeconstr.Geometry.Plane.normal = n_xy_bot
planeconstr.Graphics.RGB_color = [0.3, 0.3, 0.8]

for(k_node=1,k_node<=cols(node_set_data.local_node_numbers) ,k_node=k_node+1)

{
planeconstr.Position.node_number = node_set_data.local_node_numbers[k_node]
planeconstr.Position.element_number = node_set_data.element_numbers[k_node]
AddConnector(planeconstr)

% === xy top === plane constraint ===

boxparams.P1
boxparams.P2

[-eps,-eps,a-eps]
[ateps,ateps,ateps]

210 CHAPTER 3. HOTINT REFERENCE MANUAL

node_set.set_name = "XYTopNodes"
node_set.global_node_numbers = msh.GetNodesInBox(boxparams)
n_node_set = AddSet(node_set)

node_set_data = AccessSet(n_node_set)
planeconstr.Geometry.Plane.ground = p_top
planeconstr.Geometry.Plane.normal = n_xy_top

for(k_node=1,k_node<=cols(node_set_data.local_node_numbers),k_node=k_node+1)

{
planeconstr.Position.node_number = node_set_data.local_node_numbers[k_node]
planeconstr.Position.element_number = node_set_data.element_numbers[k_node]
AddConnector (planeconstr)

3.3.11 GenericBodyJoint
Short description

The GenericBodyJoint constrains two elements at a local position each. If only one element is
specified (second element 0), a ground GenericBodyJoint is realized. A penalty and Lagrange
formulation is available.

The constraint forces and moments are applied as follows:

Connecting element to element:

The constraint forces and moments are applied on both elements at the position of the con-
nection point of the second element.

Connecting element to ground:

The constraint forces are applied at the position of the connection point of the element.

Equations

Lagrange equations:
The constraint equations for translation are

Ctrans - AT (Xl - XQ) =0

Each equation in C,,,,s corresponds to a constrained direction. Hence only those equations
corresponding to the constrained directions are considered. If all directions are constrained,
Cirans simplifies to

Ctmms =X —X2=0
since AT (x; —x3) =0 <= x; — X3 =0.
If all rotations are constrained, then the constraint equations for rotation are

J . @t
e - e 0
(2 —
Coo=1¢€e-e | =0
J . ol
e - e, 0

)-(1)

3.3. CONNECTOR 211

If the rotation about the y-axis is not constrained, then

el . el 0
Crot () (0)

If the rotation about the z-axis is not constrained, then

el . el 0
— z Y —
Crot () (0)

Where
X1 position of connection point on body 1 in global coordinates
Xo position of connection point on body 2 in global coordinates,
or if constraint connects element to ground then connection point
of ground in global coordinates
Vi time derivative of x;
Vo time derivative of x5
A rotation matrix from local joint coordinates to global coordinates.
A =Q,J.
B B=Q,J*
Q; rotation matrix from local coordinate system of body 1 to global coordinates
Q, rotation matrix from local coordinate system of body 2 to global coordinates
J joint local frame
J* Jr = Q;F ’t:O Qi |t:0 J
el,el el (e e, e)=A
el.el.el (el e e)=B

Penalty equations:
The stiffness and damping force is given by

f= AKtransATu + ADtransATV
The stiffness and damping moment is given by

m = KrotSO + Dy oiw

Where
f constraint force due to stiffness and damping
m constraint moment due to stiffness and damping

Ky ans stiffness matrix for translation
Dyrans damping matrix for translation
K, .+ stiffness matrix for rotation

D, damping matrix for rotation
% relative angles between body 1 and body 2 or absolute angles of body 1
if body 1 is connected to ground
w relative angular velocities between body 1 and body 2 or absolute angular

velocities of body 1 if body 1 is connected to ground.

212 CHAPTER 3. HOTINT REFERENCE MANUAL

If all rotations are constrained, linearized angles

—_el . el

P Gy €

_ — J . el
Y = SO?J - eap e;
_el . et

Pz €z ey

and linearized angular velocities are used

2 Lol — el L@l

Wy e, e, —e €

W W — 5 . gl -
y e e, t+e-€

—¢&l el —el . gl

Wy €, e, —e, €

Limitations

It is strongly recommended to prefer the Lagrangian method for free rotation instead of penalty
formulation to avoid simulation problems.

The constraint forces have to act for both bodies at the same position. This means, that
if the constraint is in penalty mode, or if not all directions are constrained, the constraint
forces need to be applied outside the connection point of at least one body. In case of the
GenericBodyJoint, the constraint forces are applied at the connection position of the second
element if two elements are constrained, or if one element is constrained, the constraint forces
are applied at the connection position of the element.

So if connecting two elements with a GenericBodyJoint, the constraint forces have to be applied
outside the first bodies connection point. For rigid bodies this is equivalent to applying the
force at the connection point and applying a moment which compensates the moment induced
by the shifting of the force. Applying forces on flexible bodies outside the connection point
gives various problems, like what happens if the force is outside the body, etc.

Therefore flexible bodies are treated like rigid bodies and the force is applied to the connection
point and a moment is applied, also on the position of the connection point, which compensates
the moment induced by shifting the force.

If you need a constraint which allows the sliding of an element on a flexible body please use a

SlidingPointJoint (3.3.5)) or a SlidingPrismaticJoint (3.3.6]).

Description of the different modi

element to ground Position2.element number AND Posi-
tion2.node number have to be equal to 0

element to element Position2.element__number and/or Posi-
tion2.node number must not be equal to 0

Lagrange Physics.use penalty formulation must be set to 0.

Set the vector of constrained directions in Phy-
sics.Lagrange.constrained _directions ([z,y,2], 1 =
constrained, 0 = free). The directions are w.r.t the
local body 1 joint coordinate system.

Set the vector of constrained rotations in Phy-
sics.Lagrange.constrained _rotations ([¢z, ¢y, ¢.], 1
= constrained, 0 = free). The rotations are about
the axes of local body 1 joint coordinate system.

3.3. CONNECTOR 213

Penalty Physics.use _penalty formulation must be set to 1.
In Physics.Penalty.stiffness _matrix —and Phy-
sics.Penalty.damping matrix all parameters for
translational stiffness and damping w.r.t. local body
1 coordinate system can be set.

In Physics.Penalty.stiffness _matrix_rotation and
Physics.Penalty.damping matrix _rotation all pa-
rameters for rotational stiffness and damping w.r.t.
local body 1 coordinate system can be set.

Figure 3.36: GenericBodyJoint

f'x (XQ 7X1)
e \\ f]
Xy
2 X9
fi :
first body \:,
fi
second body

Figure 3.37: The constraint forces act for both bodies on the position of x,. The force acting
on the first body is shifted to x; (dashed) and a moment is applied to compensate the induced
moment through shifting.

Data objects of GenericBodyJoint:

’ Data name ‘ type ‘ R ‘ default description

element_type string "GenericBodyJoint"

specification of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "GenericBodyJoint"
name of the element

214 CHAPTER 3. HOTINT REFERENCE MANUAL
\ element number \ integer \ R \ 2 number of the element in the mbs
Graphics
Graphics.show connector | bool 1 Flag to draw connector
Graphics. double drawing dimensions of joint local frame. If set to
draw_size joint local frame -1, then global draw scalar size is used. If set
to 0, then no joint local frame is drawn.
Graphics.draw _size double -1 cone size for standard joint drawing
Graphics.color _body1l vector [0.3, 0.8, 0.3] [red, green, blue] first color of constraint, range
= 0..1, use default color:[-1,-1,-1]
Graphics.color _body2 vector [0.7, 0.8, 0.3] [red, green, blue] second color of constraint, range
= 0..1, use default color:[-1,-1,-1]
Geometry
Geometry. matrix R |[1,0,0;0,1,0;
joint_local frame 0,0, 1]
Geometry. vector [0, 0, 0] Prerotate joint coordinate system w.r.t. local
joint_local frame in brypant angles coordinate system of body 1 [phi x, phi y, phi
z]. Rot. sequence: JAOi=A(phi z)A(phi y)A(phi
x)
Physics
Physics. bool 0 0 = use lagrange multipliers (index 3 DAE, ex-
use_penalty formulation act), 1 = use penalty formulation (no additional
equation added, approximate constraint)
Physics.Penalty
Physics.Penalty. matrix [0, 0, 0; 0, 0, 0;
stiffness _matrix 0, 0, 0] 3x3 matrix with stiffness parameters
Physics.Penalty. matrix [0, 0, 0; 0, 0, 0;
damping matrix 0, 0, 0] 3x3 matrix with damping parameters
Physics.Penalty.stiff- matrix [0, 0, 0; 0, O, O;
ness_matrix rotation 0, 0, 0] 3x3 matrix with stiffness parameters for rotation
Physics.Penalty.dam- matrix [0, 0, 0; 0, 0, O;
ping matrix rotation 0, 0, 0] 3x3 matrix with damping parameters for rotation
Physics.Lagrange
Physics.Lagrange. vector [1, 1, 1] [x,y,2]...(1 = constrained, 0 = free), can be defined
constrained _directions as local or global directions (see Geometry)
Physics.Lagrange. vector [1, 1, 1] [angle about x axis,angle about y axis,angle about
constrained _rotations z axis]...(1 = constrained, 0 = free), can be defi-
ned as local or global directions (see Geometry)
Positionl
Position1. integer 1 Number of constrained element
element number
Position1.position vector [0, 0, O] local position. Only used if node_number == 0!
Position2
Position2. integer 0 Number of constrained element
element number
Position2.position vector [0, 0, 0] local or global (if element number == 0) posi-
tion. Only used if node number == 0!
Observable special values:
For more information see section B.1]
value name description

Internal. DOF

degrees of freedom (or generalized unknowns) of the
element. range: 1-6

Internal.algebraic_variable

algebraic variables of the element. range: 1-6

3.3. CONNECTOR

215

Connector.force

force applied to the kinematic pairs due to the con-
nector. range: 1-3, corresponds to force in global
x-y-7z direction

Connector.moment

internal global moment of connector

Connector.force local

internal local force of connector (joint coordinate sy-
stem JAi)

Connector.moment local

internal local moment of connector (joint coordinate
system JA1)

Connector.displacement

displacement between the joint coordinate systems
JAi and JAj expressed in coordinate system JAi

Connector.angle

bryant angles between the joint coordinate systems
JAi and JAj. All constrained components are zero.

Connector.stiffness matrix

stiffness matrix

Connector.damping matrix

damping matrix

Connector.stiffness matrix rotation

stiffness matrix for rotation

Connector.stiffness matrix damping

damping matrix for rotation

Connector.local position 1

local position on element 1

Connector.local position 2

local position on element 2

Controllable special values:

For more information see section B.1]

value name

description

Connector.joint _bryant angle

prescribe the angles of the joint coordinate system
(for actuation, penalty formulation ONLY?!)

Connector.stiffness matrix

stiffness matrix

Connector.damping matrix

damping matrix

Connector.stiffness matrix rotation

stiffness matrix for rotation

Connector.stiffness matrix damping

damping matrix for rotation

Connector.local position 1

local position on element 1

Connector.local position 2

local position on element 2

Example

see file GenericBodyJointShort.txt

1=1%m
rigidBody
{

element_type= "Rigid3D"
Graphics.body_dimensions=
by
nRigid = AddElement (rigidBody)

[1, 0.05, 0.05]

genericBodyJoint

{
element_type= "GenericBodyJoint"
Positionl

216 CHAPTER 3. HOTINT REFERENCE MANUAL

{
element_number= nRigid ¥number of constrained element
position= [-1/2, 0, 0] %local position
}
Position2.position= [-1/2, 0, 0] ‘local position
}
AddConnector(genericBodyJoint)

3.3.12 RevoluteJoint
Short description

The RevoluteJoint constrains all relative degrees of freedom between two bodies except the
rotation about a local rotation axis. A penalty formulation exists, which replaces the exact
lagrange constraint by a approximation with joint stiffness and damping. This constraint can
be used together with a RotatorySpringDamperActuator (3.3.19).

The RevoluteJoint is equivalent to a GenericBodyJoint with all directions and rotations
constrained except the rotation about the local x axis. The joint local frame is chosen such that
the local x axis is the rotation axis. Please read also the documentation of GenericBodyJoint
for details and limitations.

The constraint forces and moments are applied as follows:

Connecting element to element:

The constraint forces and moments are applied on both elements at the position of the con-
nection point of the second element.

Connecting element to ground:

The constraint forces are applied on the position of the connection point of the element.

Limitations

"In penalty formulation the constraints damps the relative velocity of the two connection points
in global coordinates, hence if the penalty stiffness is low and the forces high, then a damping
of the rotation is possible.

Figure 3.38: RevoluteJoint

Data objects of RevoluteJoint:

’ Data name ‘ type ‘ R ‘ default description

3.3. CONNECTOR

217

element type string "RevoluteJoint" specification of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "RevoluteJoint" name of the element

element number integer 2 number of the element in the mbs

Graphics

Graphics.show connector | bool 1 Flag to draw connector

Graphics. double 0 drawing dimensions of joint local frame. If set to

draw _size joint local frame -1, then global draw_scalar _size is used. If set
to 0, then no joint local frame is drawn.

Graphics.draw _size double -1 cone size for standard joint drawing

Graphics.color _bodyl vector [0.3, 0.8, 0.3] [red, green, blue] first color of constraint, range
= 0..1, use default color:[-1,-1,-1]

Graphics.color _body2 vector [0.7, 0.8, 0.3] [red, green, blue] second color of constraint, range
= 0..1, use default color:[-1,-1,-1]

Graphics. bool 1 flag for drawing mode; 1 == draw constraint ele-

standard joint drawing ment; 0 == show constrained directions and ro-
tations;

Graphics.diameter double -1 diameter of the revolute joint (for drawing)

Graphics.axis_length double -1 axis length of the revolute joint (for drawing)

Physics

Physics. bool 0 0 = use lagrange multipliers (index 3 DAE, ex-

use_penalty formulation act), 1 = use penalty formulation (no additional
equation added, approximate constraint)

Physics.Penalty

Physics.Penalty.damping | double 100 damping parameter used for translation and ro-
tation

Physics.Penalty.stiffness double 1e+006 stiffness parameter used for translation and rota-
tion

Physics.Lagrange

Physics.Lagrange. vector [1, 1, 1] constrained directions cannot be changed

constrained _directions

Physics.Lagrange. vector [0, 1, 1] constrained rotations cannot be changed

constrained _rotations

Physics.rotation axis vector [1, 0, 0] local rotation axis w.r.t body 1 coordinate system

Positionl

Positionl. integer 1 Number of constrained element

element number

Position1.position vector [0, 0, O] local position. Only used if node_number == 0!

Position2

Position2. integer 0 Number of constrained element

element number

Position2.position vector [0, 0, 0] local or global (if element number == 0) posi-
tion. Only used if node number == 0!

Observable special values:
For more information see section B.1]
value name description

Internal. DOF

degrees of freedom (or generalized unknowns) of the
element. range: 1-5

Internal.algebraic_variable

algebraic variables of the element. range: 1-5

218

CHAPTER 3. HOTINT REFERENCE MANUAL

Connector.force

force applied to the kinematic pairs due to the con-
nector. range: 1-3, corresponds to force in global
x-y-7z direction

Connector.moment

internal global moment of connector

Connector.force local

internal local force of connector (joint coordinate sy-
stem JAi)

Connector.moment local

internal local moment of connector (joint coordinate
system JA1)

Connector.displacement

displacement between the joint coordinate systems
JAi and JAj expressed in coordinate system JAi

Connector.angle

bryant angles between the joint coordinate systems
JAi and JAj. All constrained components are zero.

Connector.stiffness matrix

stiffness matrix

Connector.damping matrix

damping matrix

Connector.stiffness matrix rotation

stiffness matrix for rotation

Connector.stiffness matrix damping

damping matrix for rotation

Connector.local position 1

local position on element 1

Connector.local position 2

local position on element 2

Controllable special values:

For more information see section B.1]

value name

description

Connector.stiffness matrix

stiffness matrix

Connector.damping matrix

damping matrix

Connector.stiffness matrix rotation

stiffness matrix for rotation

Connector.stiffness matrix damping

damping matrix for rotation

Connector.local position 1

local position on element 1

Connector.local position 2

local position on element 2

Example

see file RevoluteJointShort.txt

1=1%m
= 9.81) m/s"2

gravLoad

{
load_type = "Gravity"
direction = 3 % z - direction

gravity_constant = g

}
nLoad = AddLoad(gravLoad)

rigidBody

{
element_type= "Rigid3D"
loads= [nLoad]

3.3. CONNECTOR 219

Graphics.body_dimensions= [1, 0.05, 0.05]

}
nRigid = AddElement(rigidBody)

revoluteJoint

{
element_type= "RevoluteJoint"
Physics.rotation_axis= [0, 1, 0] %local rotation axis
Positionl
{
element_number= nRigid %number of constrained element
position= [-1/2, 0, 0] %local position
}
by

AddConnector(revoluteJoint)

3.3.13 PrismaticJoint
Short description

The PrismaticJoint constrains all relative degrees of freedom between two bodies except the
translation along a local sliding axis. A penalty formulation exists, which replaces the exact
Lagrange constraint by a approximation with joint stiffness and damping.

The PrismaticJoint is equivalent to a GenericBodyJoint with all directions and rotati-
ons constrained except the translation about the local x axis. The joint local frame is chosen
such that the local x axis is the sliding axis. Please read also the documentation of GenericBo-
dyJoint for details and limitations.

If the first body is a flexible body, then you might consider using the SlidingPrismaticJoint
(13.3.6]).

The constraint forces and moments are applied as follows:

Connecting element to element:

The constraint forces and moments are applied on both elements at the position of the con-
nection point of the second element.

Connecting element to ground:

The constraint forces are applied on the position of the connection point of the element.

Figure 3.39: PrismaticJoint

Data objects of PrismaticJoint:

’ Data name ‘ type ‘ R ‘ default description

220 CHAPTER 3. HOTINT REFERENCE MANUAL

element _type string "PrismaticJoint"
specification of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "PrismaticJoint"
name of the element

element _number integer R 2 number of the element in the mbs

Graphics

Graphics.show connector | bool 1 Flag to draw connector

Graphics. double 0 drawing dimensions of joint local frame. If set to

draw_size joint local frame -1, then global draw scalar size is used. If set
to 0, then no joint local frame is drawn.

Graphics.draw _size double -1 cone size for standard joint drawing

Graphics.color _body1l vector [0.3, 0.8, 0.3] [red, green, blue] first color of constraint, range
= 0..1, use default color:[-1,-1,-1]

Graphics.color _body2 vector [0.7, 0.8, 0.3] [red, green, blue] second color of constraint, range
= 0..1, use default color:[-1,-1,-1]

Graphics. bool 1 flag for drawing mode; 1 == draw constraint ni-

standard _joint drawing cely; 0 == show constrained directions and rota-
tions;

Graphics.rail length double -1 length of the prismatic joint (for drawing)

Graphics.joint_cube_size | vector [-1, -1, -1] cube dimension of prismatic joint (for drawing);
[lx (in sl. dir.),ly (normal to sl. dir.),lz (normal
to sl. dir.)]

Physics

Physics. bool 0 0 = use lagrange multipliers (index 3 DAE, ex-

use_penalty formulation act), 1 = use penalty formulation (no additional
equation added, approximate constraint)

Physics.Penalty

Physics.Penalty.damping | double 100 damping parameter used for translation and ro-
tation

Physics.Penalty.stiffness double 1e+-006 stiffness parameter used for translation and rota-
tion

Physics.Lagrange

Physics.Lagrange. vector R | [0, 1, 1] constrained directions cannot be changed

constrained _directions

Physics.Lagrange. vector R [1, 1, 1] constrained rotations cannot be changed

constrained _rotations

Physics.sliding direction | vector [1, 0, O] local sliding direction w.r.t body 1 coordinate sy-
stem

Positionl

Positionl. integer 1 Number of constrained element

element number

Position1.position vector [0, 0, O] local position. Only used if node_number == 0!

Position2

Position2. integer 0 Number of constrained element

element number

Position2.position vector [0, 0, 0] local or global (if element number == 0) posi-
tion. Only used if node number == 0!

Observable special values:

For more information see section B.1]

] value name \ description

3.3. CONNECTOR

221

Internal. DOF

degrees of freedom (or generalized unknowns) of the
element. range: 1-5

Internal.algebraic_variable

algebraic variables of the element. range: 1-5

Connector.force

force applied to the kinematic pairs due to the con-
nector. range: 1-3, corresponds to force in global
x-y-z direction

Connector.moment

internal global moment of connector

Connector.force local

internal local force of connector (joint coordinate sy-
stem JAi)

Connector.moment local

internal local moment of connector (joint coordinate
system JA1)

Connector.displacement

displacement between the joint coordinate systems
JAi and JAj expressed in coordinate system JAi

Connector.angle

bryant angles between the joint coordinate systems
JAi and JAj. All constrained components are zero.

Connector.stiffness matrix

stiffness matrix

Connector.damping matrix

damping matrix

Connector.stiffness matrix rotation

stiffness matrix for rotation

Connector.stiffness matrix damping

damping matrix for rotation

Connector.local position 1

local position on element 1

Connector.local position 2

local position on element 2

Controllable special values:

For more information see section B.1]

value name

description

Connector.stiffness matrix

stiffness matrix

Connector.damping matrix

damping matrix

Connector.stiffness matrix rotation

stiffness matrix for rotation

Connector.stiffness matrix damping

damping matrix for rotation

Connector.local position 1

local position on element 1

Connector.local position 2

local position on element 2

Example

see file PrismaticJointShort.txt

1=1%m
force
{

load_type = "ForceVector3D"
force_vector = [10,10,10]

}

nForce = AddLoad(force)

rigidBody
{
element_type= "Rigid3D"

222 CHAPTER 3. HOTINT REFERENCE MANUAL

loads= [nForce]
Graphics.body_dimensions= [1, 0.05, 0.05]

}
nRigid = AddElement (rigidBody)

prismaticJoint

{
element_type= "PrismaticJoint"
Physics.sliding_direction = [1,0,0]
Positionl
{
element_number= nRigid %number of constrained element
position= [-1/2, 0, 0] %local position
}
Position2.position= [-1/2, O, 0]
}

AddConnector(prismaticJoint)

3.3.14 UniversalJoint

Short description

The UniversalJoint constains the local position of two elements and keeps two axes, one on
each body, perpendicular to each other.

Degrees of freedom

The vector of the DOF contains the Lagrangian parameters A = [A\; Ay A3)\4]T, where A\, Ao, A3
are measures for the violation of the displacement condition and)\, is a measure for the violation
of the orthogonality condition of the two axes.

Geometry

For this constraint one needs to specify the axes of the cross and the directions in which the
hinges are drawn. The direction of the hinge and the axis connected to this hinge have to be
given in the local coordinate system of the respective body. See figure [3.41

Equations

The positions and axes are given in local coordinates of body 1 respectively body 2. However
the calculations are done internally in global coordinates.
Let

i

. . -
—)) %

be the position (in global coordinates) where the joint is connected to the first body and let
= [o] o} al]

be the position (in global coordinates) where the joint is connected to the second body.
Let
al=[dl a) aj]"

3.3. CONNECTOR 223

be the axis (in global coordinates) connected to the first body and let
W[df o]

be the axis (in global coordinates) connected to the second body. Then the constraint equations
at position level are

The first three constraints restrict the position of the connection points of body 1 and 2. The
fourth equation ensures that the two axes of the cross are perpendicular to each other.
The constraint equations at velocity level are

C= a' a’

ot ot

ox! _ oxI
ot ot =0

Limitations

No penalty formulation is available.

Figure 3.40: UniversalJoint

224

CHAPTER 3. HOTINT REFERENCE MANUAL

Data objects

of UniversalJoint:

Figure 3.41: UniversalJoint

‘ Data name ‘ type ‘ R ‘ default description

element _type string "UniversalJoint"
specification of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "UniversalJoint"
name of the element

element number integer R 2 number of the element in the mbs

Graphics

Graphics.show connector | bool 1 Flag to draw connector

Graphics.color _bodyl vector [0.3, 0.8, 0.3] [red, green, blue| color of the hinge connected to
the first body, range = 0..1

Graphics.color _body2 vector [0.7, 0.8, 0.3] [red, green, blue| color of the hinge connected to
the first body, range = 0..1

Graphics.color _cross vector [0.2, 0.2, 0.2] [red, green, blue] color of the cross shaft

Graphics.draw_length double -1 length of the universal joint (for drawing)

Graphics.draw_ width double -1 width of the universal joint (for drawing)

Graphics. vector [1, 0, 0] direction from body 1 to joint (for drawing)

draw_direction 1

Graphics. vector [-1, 0, 0] direction from body 2 to joint (for drawing)

draw_direction 2

Positionl

Position1. integer 1 Number of constrained element

element number

Position1.position vector 0,0,0 local position

Position1.axis vector 0,1,0 the axis of the cross connected to body 1 in local
coordinates

Position2

Position2. integer 0 Number of constrained element

element number

Position2.position vector [0, 0, 0] local or global (if element number —= 0) posi-
tion

Position2.axis vector [0, 0, 1] the axis of the cross connected to body 2 in local
coordinates

3.3. CONNECTOR 225

Observable special values:

For more information see section

value name description
Internal. DOF degrees of freedom (or generalized unknowns) of the
element. range: 1-4
Internal.algebraic variable algebraic variables of the element. range: 1-4
Example

see file UniversalJoint.txt

rotor
{
element_type= "Rigid3D"
name= "rotorl"
Graphics
{
body_dimensions= [1, 0.1, 0.1]
}
Physics
{
moment_of_inertia= [sqr(0.05)*0.5, 0, O
0, 1/12*%(3*sqr(0.05)+1), 0
0, 0, 1/12%(3*sqr(0.05)+1)]
volume= sqr(0.05)#*Pi

mass= 1
T
Initialization
{

initial_rotation = [0, O, O]
initial_position = [0, 0, 0]
initial_angular_velocity= [0, O, 0] %Angular velocity vector in global coordinates: [ang_X,
}
}
nRotorl = AddElement(rotor)

rotor.name = "rotor2"
rotor.Initialization.initial_rotation
rotor.Initialization.initial_position
nRotor2 = AddElement (rotor)

[0, 0, pi/4]
[0.5+0.5*sqrt(0.5), 0.5%sqrt(0.5), 0]

universalJoint
{
element_type= "UniversalJoint"
name= "UniversalJoint"
Graphics
{
show_connector= 1
color_bodyl= [0.3, 0.8, 0.3]

226 CHAPTER 3. HOTINT REFERENCE MANUAL

color_body2= [0.7, 0.8, 0.3]

color_cross= [0.2, 0.2, 0.2]

draw_length= -1

draw_width= -1

draw_direction_1= [1, 0, 0]

draw_direction_2= [-1, 0, 0]
}

Positionl

{

element_number= nRotorl
position= [0.5, 0, O]
axis= [0, 1, 0]

T

Position2

{
element_number= nRotor2
position= [-0.5, 0, 0]
axis= [0, 0, 1]
}
}

AddConnector(universalJoint)

3.3.15 RigidJoint

Short description

The RigidJoint constrains the position and relative angles of an element at a specified local
position. If only one element is specified, a ground joint is realized. A penalty formulation
exists, which replaces the exact lagrange constraint by an approximation with joint stiffness
and damping. The RigidJoint is equivalent to a GenericBodyJoint with all directions
and rotations constrained Please read also the documentation of GenericBodyJoint for details
and limitations.

The constraint forces and moments are applied as follows:

Connecting element to element:

The constraint forces and moments are applied on both elements at the position of the con-
nection point of the second element.

Connecting element to ground:

The constraint forces are applied on the position of the connection point of the element.

3.3. CONNECTOR

Data objects of RigidJoint:

227

Figure 3.42: RigidJoint

| Data name | type | R | default description

element type string "RigidJoint" specification of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "RigidJoint" name of the element

element _number integer R 2 number of the element in the mbs

Graphics

Graphics.show connector | bool 1 Flag to draw connector

Graphics. double 0 drawing dimensions of joint local frame. If set to

draw_size joint local frame -1, then global draw scalar size is used. If set
to 0, then no joint local frame is drawn.

Graphics.draw _size double -1 cone size for standard joint drawing

Graphics.color _body1l vector [0.3, 0.8, 0.3] [red, green, blue] first color of constraint, range
= 0..1, use default color:[-1,-1,-1]

Graphics.color _body2 vector [0.7, 0.8, 0.3] [red, green, blue] second color of constraint, range
= 0..1, use default color:[-1,-1,-1]

Graphics. bool 1 flag for drawing mode; 1 == draw constraint ele-

standard _joint drawing ment; 0 == show constrained directions and ro-
tations;

Graphics.cube length double -1 rigid joint dimension (for drawing)

Physics

Physics. bool 0 0 = use lagrange multipliers (index 3 DAE, ex-

use_penalty formulation act), 1 = use penalty formulation (no additional
equation added, approximate constraint)

Physics.Penalty

Physics.Penalty.damping | double 100 damping parameter used for translation and ro-
tation

Physics.Penalty.stiffness double 1e+006

Physics.Lagrange

Physics.Lagrange. vector [1, 1, 1] constrained directions cannot be changed

constrained _directions

Physics.Lagrange. vector [1, 1, 1] constrained rotations cannot be changed

constrained _rotations

Positionl

Position1. integer 1 Number of constrained element

element number

Position1.position vector [0, 0, O] local position. Only used if node_number == 0!

Position2

Position2. integer 0 Number of constrained element

element number

Position2.position vector [0, 0, O] local or global (if element_number == 0) posi-

tion. Only used if node number == 0!

228

Observable special values:

For more information see section B.1]

CHAPTER 3. HOTINT REFERENCE MANUAL

value name

description

Internal. DOF

degrees of freedom (or generalized unknowns) of the
element. range: 1-6

Internal.algebraic_variable

algebraic variables of the element. range: 1-6

Connector.force

force applied to the kinematic pairs due to the con-
nector. range: 1-3, corresponds to force in global
x-y-z direction

Connector.moment

internal global moment of connector

Connector.force local

internal local force of connector (joint coordinate sy-
stem JAI)

Connector.moment local

internal local moment of connector (joint coordinate
system JA1)

Connector.displacement

displacement between the joint coordinate systems
JAi and JAj expressed in coordinate system JAi

Connector.angle

bryant angles between the joint coordinate systems
JAi and JAj. All constrained components are zero.

Connector.stiffness matrix

stiffness matrix

Connector.damping matrix

damping matrix

Connector.stiffness matrix rotation

stiffness matrix for rotation

Connector.stiffness matrix damping

damping matrix for rotation

Connector.local position 1

local position on element 1

Connector.local position 2

local position on element 2

Controllable special values:

For more information see section B.1]

value name

description

Connector.stiffness matrix

stiffness matrix

Connector.damping matrix

damping matrix

Connector.stiffness matrix rotation

stiffness matrix for rotation

Connector.stiffness matrix damping

damping matrix for rotation

Connector.local position 1

local position on element 1

Connector.local position 2

local position on element 2

Example

see file RigidJointShort.txt

1=1%m
9.81 % m/s"2

gravLoad
{
load_type = "Gravity"

3.3. CONNECTOR 229

direction = 3 ¥ z - direction
gravity_constant = g

}
nLoad = AddLoad(gravLoad)

rigidBody
{
element_type= "Rigid3D"
loads= [nLoad]
Graphics.body_dimensions= [1, 0.05, 0.05]

}
nRigid = AddElement (rigidBody)

rigidJoint
{
element_type= "RigidJoint"
Positionl
{
element_number= nRigid ¥number of constrained element
position= [-1/2, 0, 0] %local position
}
Position2.position= [-1/2, 0, 0]
X
AddConnector{(rigidJoint)

3.3.16 CylindricalJoint

Short description

The CylindricalJoint constrains like the RevoluteJoint, but allows additionally translation along
the rotational axis. A penalty formulation exists, which replaces the exact lagrange constraint
by a approximation with joint stiffness and damping.

The CylindricalJoint is equivalent to a GenericBodyJoint with all directions and ro-
tations constrained except the translation and rotation about the local x axis. The joint local
frame is chosen such that the local x axis is the rotation and sliding axis. Please read also the
documentation of GenericBodyJoint for details and limitations.

The constraint forces and moments are applied as follows:

Connecting element to element:

The constraint forces and moments are applied on both elements at the position of the con-
nection point of the second element.

Connecting element to ground:

The constraint forces are applied on the position of the connection point of the element.

230

CHAPTER 3.

HOTINT REFERENCE MANUAL

Figure 3.43: CylindricalJoint

Data objects of CylindricalJoint:

] Data name \ type \ R \ default description

element_type string "CylindricalJoint"
specification of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "CylindricalJoint"
name of the element

element number integer R |2 number of the element in the mbs

Graphics

Graphics.show connector | bool 1 Flag to draw connector

Graphics. double 0 drawing dimensions of joint local frame. If set to

draw_size joint local frame -1, then global draw scalar size is used. If set
to 0, then no joint local frame is drawn.

Graphics.draw _size double -1 cone size for standard joint drawing

Graphics.color _bodyl vector [0.3, 0.8, 0.3] [red, green, blue] first color of constraint, range
= 0..1, use default color:[-1,-1,-1]

Graphics.color _body2 vector [0.7, 0.8, 0.3] [red, green, blue] second color of constraint, range
= 0..1, use default color:[-1,-1,-1]

Graphics. bool 1 flag for drawing mode; 1 == draw constraint ele-

standard joint drawing ment; 0 == show constrained directions and ro-
tations;

Graphics. vector [-1, -1] cylinder dimension of cylindrical joint (for dra-

joint _cylinder _size wing); [Ix (cyl. length, in sl. dir.),d (cylinder
diameter)]

Graphics.axis_length double -1 axis length of the revolute joint (for drawing)

Physics

Physics. bool 0 0 — use lagrange multipliers (index 3 DAE, ex-

use_penalty formulation act), 1 = use penalty formulation (no additional
equation added, approximate constraint)

Physics.Penalty

Physics.Penalty.damping | double 100 damping parameter used for translation and ro-
tation

Physics.Penalty.stiffness double 1e+-006 stiffness parameter used for translation and rota-
tion

Physics.Lagrange

Physics.Lagrange. vector [0, 1, 1] constrained directions cannot be changed

constrained _directions

Physics.Lagrange. vector R [0, 1, 1] constrained rotations cannot be changed

constrained _rotations

Physics. vector [1, 0, 0] local rotation/sliding axis w.r.t body 1 coordinate

rotation _sliding axis system

Positionl

3.3. CONNECTOR 231
Position1. integer 1 Number of constrained element
element number
Position1.position vector [0, 0, 0] local position. Only used if node number == 0!
Position2
Position2. integer 0 Number of constrained element
element number
Position2.position vector [0, 0, 0] local or global (if element number == 0) posi-
tion. Only used if node number == 0!

Observable special values:

For more information see section B.1]

value name

description

Internal. DOF

degrees of freedom (or generalized unknowns) of the
element. range: 1-4

Internal.algebraic variable

algebraic variables of the element. range: 1-4

Connector.force

force applied to the kinematic pairs due to the con-
nector. range: 1-3, corresponds to force in global
x-y-z direction

Connector.moment

internal global moment of connector

Connector.force local

internal local force of connector (joint coordinate sy-
stem JAi)

Connector.moment local

internal local moment of connector (joint coordinate
system JA1)

Connector.displacement

displacement between the joint coordinate systems
JAi and JAj expressed in coordinate system JAi

Connector.angle

bryant angles between the joint coordinate systems
JAi and JAj. All constrained components are zero.

Connector.stiffness matrix

stiffness matrix

Connector.damping matrix

damping matrix

Connector.stiffness matrix rotation

stiffness matrix for rotation

Connector.stiffness matrix damping

damping matrix for rotation

Connector.local position 1

local position on element 1

Connector.local position 2

local position on element 2

Controllable special values:

For more information see section B.1]

value name

description

Connector.stiffness matrix

stiffness matrix

Connector.damping matrix

damping matrix

Connector.stiffness matrix rotation

stiffness matrix for rotation

Connector.stiffness matrix damping

damping matrix for rotation

Connector.local position 1

local position on element 1

Connector.local position 2

local position on element 2

232 CHAPTER 3. HOTINT REFERENCE MANUAL

Example

see file CylindricalJointShort.txt

1=19%m
force
{

load_type = "ForceVector3D"
force_vector = [10,10,10]

¥
nForce = AddLoad(force)

rigidBody
{
element_type= "Rigid3D"
loads= [nForcel
Graphics.body_dimensions= [1, 0.05, 0.05]

}
nRigid = AddElement (rigidBody)

cylindricalJoint

{
element_type= "CylindricalJoint"
Physics.rotation_sliding_axis = [1,0,0]
Positionl
{
element_number= nRigid ¥number of constrained element
position= [-1/2, 0, 0] %local position
}
Position2.position= [-1/2, 0, 0]
}
AddConnector(cylindricalJoint)

3.3.17 SpringDamperActuator
Short description

The Spring-Damper-Actuator connects two points with a spring, a damper and a actor element,
in which actuator force fa remains constant. The resultant force is applied in the connection
line of these points. There are different modes available, how the spring and damper force is
calculated. It is also possible to change the neutral spring length. This joint is realized in
Penalty formulation only.

Equations
T T
point positions: p(l) = [pgﬁl)pg)pgl)} ; p(2) = [p? 52) 22)] .
T T
point velocities: p) = {p&”pé”pi”} ; p? = [pﬁ?’pf)pf)] .

spring length: [

3.3. CONNECTOR

)) . 1) _5(2)
direction vector: dir = P_"P

233

\/((1 _

spring elongation: Az =1 — [y = (

spring velocity: v = (pV) — p®)) dir

resultant force (see section forcemode):
forcemode 0: f=kAz+dv+ f, (a)
forcemode 1: f =k (Az) Az +d(v)v+ f, (b)
forcemode 2: f = fi + fa+ fa (¢)
forcemode 3: f = fi, (Az) + f4 (v) + fu (d)

Limitations

) ((1) pyz)Q ((1)_ (2))2

2) dir — [,

If the 2 end points of the spring are the same point in the initial configuration, this may lead
to problems! The direction of the spring can not be determined in that case!

Description of the different modi

element to ground Position2.element number AND Posi-
tion2.node number have to be equal to 0
element to element Position2.element number and/or Posi-

tion2.node number must not be equal to 0

forcemode

Physics.forcemode = 0:

Force is computed as (a) with constant stiffness and
damping factors k£ and d. The factors can be defined
in the two fields in Physics.Linear.
Physics.forcemode = 1:

2 MathFunctions are used to describe piecewise li-
near stiffness k (Az) and damping d (v), see formula
(b) and Physics.MathFunction.
Physics.forcemode — 2:

2 IOElementDataModifiers describe the force (c)
due to stiffness and damping. You should use this
mode if full nonlinear behavior is required, e.g.
fe= [t lv,...)and fg=d(t1v,..).
Physics.forcemode — 3:

2 MathFunctions are used to describe piecewise
linear spring force fj (Az) and damping force f4 (v),
see formula (d) and Physics.MathFunction.

modifier value names for forcemode ==
fr: Connector.SpringDamperActuator.spring _force’
fa: Connector.SpringDamperActuator.damper_force’

spring length offset

It is possible to change the spring length I
(neutral length of the spring) during the simu-
lation, e.g. for the usage of the SpringDam-
perActuator as a linear actuator. In standard
mode the value in the field Physics.spring length
remains constant. This value can be modi-
fied by a IOElementDataModifier via ’Connec-
tor.SpringDamperActuator.spring length offset’.

additional actor force

In Physics.actor _force a constant offset force f, can
be added.

234

CHAPTER 3. HOTINT REFERENCE MANUAL

Figure 3.44: SpringDamperActuator

Data objects of SpringDamperActuator:

‘ Data name ‘ type ‘ R ‘ default description

element type string "SpringDamperActuator”
specification of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "SpringDamperActuator"
name of the element

element number integer 2 number of the element in the mbs

Graphics

Graphics.show connector | bool 1 Flag to draw connector

Graphics.color _body1l vector [0.3, 0.8, 0.3] [red, green, blue] first color of constraint (spring),
range — 0..1, use default color:[-1,-1,-1]

Graphics.color _body2 vector [0.7, 0.8, 0.3] [red, green, blue| second color of constraint (dam-
per), range = 0..1, use default color:[-1,-1,-1]

Graphics. double -1 spring diameter used for drawing only.

spring diameter

Graphics.spring _coils double 10 spring coils used for drawing. If set to 0, then a
cylinder with the value ’spring diameter’ as dia-
meter is shown instead of the coils.

Graphics. double -1 damper diameter used for drawing only. If set to

damper diameter 0, then the damper is not shown. It’s recommen-
ded to choose the value smaller then the spring
diameter.

Physics

Physics.spring length double 0 length of the spring in the initial configuration

Physics.actor_force double 0 constant force acting on the spring

Physics.forcemode integer 0 defines how the spring and damper force is com-
puted: 0..constant coefficient, 1..MathFunction
(stiffness and damping), 2..spring and dam-
per force prescribed by IOElementDataModi-
fier, 3..MathFunction (spring force and damping
force)

Physics.Linear

Physics.Linear. double 100 stiffness coefficient of the linear spring. Only used

spring stiffness if forcemode is 0.

Physics.Linear.damping double 1 damping coefficient for viscous damping. Only

used if forcemode is 0.

Physics.MathFunction

Physics.MathFunction.MathFunction k

3.3. CONNECTOR

235

Physics.MathFunction. integer -1 modus for piecewise interpolation: -1=not piece-
MathFunction k. wise, 0=constant, 1=linear, 2=quadratic
piecewise__mode

Physics.MathFunction. vector [l supporting points (e.g. time or place) for piece-
MathFunction k. wise interpolation

piecewise points

Physics.MathFunction. vector [l values at supporting points

MathFunction k.

piecewise values

Physics.MathFunction. vector (] differential values at supporting points - for qua-
MathFunction k. dratic interpolation

piecewise diff values

Physics.MathFunction. string m string representing parsed function, e.g.
MathFunction k. ’A*sin(omega*t)’

parsed _function

Physics.MathFunction. string m string representing parameter of parsed function,
MathFunction k.par- eg. 't/

sed function parameter

Physics.MathFunction.MathFunction d

Physics.MathFunction. integer -1 modus for piecewise interpolation: -1=not piece-
MathFunction d. wise, 0=constant, 1=linear, 2=quadratic
piecewise__mode

Physics.MathFunction. vector [l supporting points (e.g. time or place) for piece-
MathFunction d. wise interpolation

piecewise points

Physics.MathFunction. vector (] values at supporting points

MathFunction d.

piecewise values

Physics.MathFunction. vector (] differential values at supporting points - for qua-
MathFunction _d. dratic interpolation

piecewise diff values

Physics.MathFunction. string m string representing parsed function, e.g.
MathFunction d. ’A*sin(omega*t)’

parsed _function

Physics.MathFunction. string m string representing parameter of parsed function,
MathFunction d.par- eg. 't/

sed function parameter

Physics.MathFunction.MathFunction fk

Physics.MathFunction. integer -1 modus for piecewise interpolation: -1=not piece-

MathFunction _fk.
piecewise _mode

wise, 0=constant, 1=linear, 2=quadratic

Physics.MathFunction. vector
MathFunction _fk.
piecewise points

supporting points (e.g. time or place) for piece-
wise interpolation

Physics.MathFunction. vector
MathFunction _fk.

piecewise values

values at supporting points

Physics.MathFunction. vector
MathFunction fk.
piecewise diff values

differential values at supporting points - for qua-
dratic interpolation

Physics.MathFunction. string
MathFunction fk.
parsed _function

nn

string representing parsed function, e.g.
"A*sin(omega*t)’

Physics.MathFunction. string
MathFunction fk.par-
sed function parameter

nn

string representing parameter of parsed function,
eg. 't’

Physics.MathFunction.MathFunction fd

236 CHAPTER 3. HOTINT REFERENCE MANUAL
Physics.MathFunction. integer -1 modus for piecewise interpolation: -1=not piece-
MathFunction fd. wise, 0=constant, 1=linear, 2=quadratic
piecewise__mode
Physics.MathFunction. vector [l supporting points (e.g. time or place) for piece-
MathFunction _fd. wise interpolation
piecewise points
Physics.MathFunction. vector [l values at supporting points
MathFunction _fd.
piecewise values
Physics.MathFunction. vector (] differential values at supporting points - for qua-
MathFunction _fd. dratic interpolation
piecewise diff values
Physics.MathFunction. string m string representing parsed function, e.g.
MathFunction fd. ’A*sin(omega*t)’
parsed _function
Physics.MathFunction. string m string representing parameter of parsed function,
MathFunction fd.par- eg. 't/
sed function parameter
Positionl
Position1. integer 1 Number of constrained element
element number
Positionl.position vector [0, 0, 0] local position. Only used if node number == 0!
Positionl.node number integer 0 local or global (if element number == 0) node
number.

Position2

Position2. integer 0 Number of constrained element

element number

Position2.position vector [0, 0, 0] local or global (if element number == 0) posi-
tion. Only used if node number == 0!

Position2.node number integer 0 local or global (if element number == 0) node
number.

Observable special values:

For more information see section B.1]
value name description

Internal. DOF

degrees of freedom (or generalized unknowns) of the
element. range: 1-14

Internal.second order variable

second order variables of the element. range: 1-7

Internal.second order variable velocity

velocities of second order variables of the element.

range: 1-7

Connector.force

force applied to the kinematic pairs due to the con-
nector. range: 1-3, corresponds to force in global
x-y-z direction

internal resultant force of connector

Connector.SpringDamperActuator.force

Connector.SpringDamperActuator.spring_length

actual spring length

Connector.SpringDamperActuator.spring _elongation

elongation of spring

Connector.SpringDamperActuator.spring_ velocity

spring velocity

3.3. CONNECTOR

Controllable special values:

For more information see section

237

value name description

Connector.SpringDamperActuator.spring _length _offsgprescribe the neutral spring length

Connector.SpringDamperActuator.spring _force prescribe the stiffness force

Connector.SpringDamperActuator.damper _force prescribe the damping force
Example

see file SpringDamperActuator.txt

1

0.5 % m
10 % kg
9.81 % m/s"2

g

gravLoad

{
load_type = "Gravity"
direction = 3 ¥ z - direction
gravity_constant = g

by

nLoad = AddLoad(gravLoad)

mass
{
element_type = "Mass3D" Yspecification of element type.
loads = [nLoad]
Initialization.initial_position = [0, O, 1] Y%initial position
Physics.mass = m %total mass
}

nMass = AddElement (mass)

springDamperActuator

{
element_type = "SpringDamperActuator"
Physics.forcemode = 2 % nonlinear spring
Positionl.element_number = nMass Jnumber of constrained element
Position2.element_number = O %number of constrained element

3

nSpringDamperActuator = AddConnector(springDamperActuator)

disp

{
sensor_type = "FVElementSensor"
element_number = nMass
field_variable = "displacement"
component = "z"

}

nDisp = AddSensor(disp)

238 CHAPTER 3. HOTINT REFERENCE MANUAL

nonlinearStiffnessForce

{
element_type = "IOMathFunction"
Graphics
{
position = [0, 0] Jreference drawing position
draw_size = [20, 20, 0] Ydraw size
}
I0Block
{
input_element_numbers = [nDisp] Yelement connected to input
input_element_types = [2] ¥%2=Sensor
input_local_number = [1]
MathFunction
{
piecewise_mode = 1 Ymodus for piecewise interpolation: 1=linear
piecewise_points = [-0.3,-0.2,-0.15,0,0.15,0.2,0.3] ¥%m, supporting points
piecewise_values = [-5000,-300,-30,0,30,300,5000] %N, values at s. p.
}
}
}

nNonlinearStiffnessForce = AddElement(nonlinearStiffnessForce)

modifier_SDA

{
element_type = "IOElementDataModifier"
Graphics
{
position = [30, 0] Y%reference drawing position
draw_size = [20, 20, 0] Ydraw size
}
I0Block
{
input_element_numbers = [nNonlinearStiffnessForce] ‘element connected to input
input_element_types = [1]
input_local_number = [1]
mod_variable_name = "Connector.SpringDamperActuator.spring_force" Y¥modified element data
mod_element_number = nSpringDamperActuator ¥modified constraint
3
}

AddElement (modifier_SDA)

3.3.18 RigidLink

Short description

A rigid link is a rigid constraint element that provides a stiff connection between nodes or
positions in the model. In standard mode the distance between the connected points remains
constant. In extended mode it is possible to change the distance as a function of time or input.
There is only a Lagrange formulation implemented.

3.3. CONNECTOR 239

Equations

T T
point positions: p) = [p&”pé”pi”] X p? = [EUQ)péQ)pgz)] .

T T
point velocities: p(t) = [p&”pg”pg”} : p® = [pf)pf) '22)] .

link length: [

time derivative of link length: v (equates o)
p()_p®)

<p§nl)fp§;2))2+(pél)*p§2))2+<p§1)fp§2))2
position constraint: C = (p(!) — p(Q))T dir — I, =0 (a)
velocity constraint: C = (p*) — 1')(2))T dir —v =0 (b)

ocT _ (op® 9p@ Td'
e dq Oq Ir

direction vector: dir = \/

Limitations

For a position constraint (index 3 solver) with variable distance it is necessary to define the link
length [y as a function of time. In this case the velocity input v (the derivative of the distance
with respect to time) is not considered, see formula (a).Reverse conditions apply to the velocity
constraint with formula (b).

Description of the different modi

element to ground Position2.element number AND Posi-
tion2.node number have to be equal to 0

element to element Position2.element number and/or Posi-
tion2.node number must not be equal to 0

distancemode Physics.distancemode = 0:

The distance remains constant. The value can be
defined in the field Physics.Constant.link length.
Physics.distancemode = 1:

A MathFunction is used to describe piecewise linear
distance or velocity development over time t, e.g. for
a rigid link actuator. See Physics.MathFunction.
Physics.distancemode — 2:

A IOElementDataModifier describes the developing
distance or velocity over time t, e.g. for a rigid link
actuator. See section limitations.

Figure 3.45: RigidLink

240

Data objects of RigidLink:

CHAPTER 3. HOTINT REFERENCE MANUAL

’ Data name ‘ type ‘ R ‘ default description

element type string "RigidLink" specification of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "RigidLink" name of the element

element number integer R |2 number of the element in the mbs

Graphics

Graphics.show connector | bool 1 Flag to draw connector

Graphics.color _bodyl vector [0.3, 0.8, 0.3] [red, green, blue] first color of constraint, range
= 0..1, use default color:[-1,-1,-1]

Graphics.color _body2 vector [0.7, 0.8, 0.3] [red, green, blue] second color of constraint, range
= 0..1, use default color:[-1,-1,-1]

Graphics. double -1 cylinder one diameter (drawing only).

cylinderl diameter

Graphics. double 0 cylinder two diameter (drawing only). Only used

cylinder2 diameter if distance not constant = distancemode 1 or 2.

Graphics. double 0 cylinder one length (drawing only). Only used if

cylinderl length distance not constant = distancemode 1 or 2.

Physics

Physics.distancemode integer 0 defines the distance: 0..constant distance, 1..Mat-
hFunction, 2..I0ElementDataModifier

Physics.Constant

Physics.Constant. double 0 constant distance is used, when distancemode =

link length 0

Physics.MathFunction

Physics.MathFunction.MathFunction 1

Physics.MathFunction. integer -1 modus for piecewise interpolation: -1=not piece-

MathFunction 1. wise, 0=constant, 1=linear, 2=quadratic

piecewise _mode

Physics.MathFunction. vector [] supporting points (e.g. time or place) for piece-

MathFunction 1. wise interpolation

piecewise _points

Physics.MathFunction. vector [] values at supporting points

MathFunction 1.

piecewise values

Physics.MathFunction. vector [l differential values at supporting points - for qua-

MathFunction 1. dratic interpolation

piecewise diff values

Physics.MathFunction. string m string representing parsed function, e.g.

MathFunction 1. "A*sin(omega*t)’

parsed _function

Physics.MathFunction. string m string representing parameter of parsed function,

MathFunction l.par- eg. 't/

sed function parameter

Physics.MathFunction.MathFunction v

Physics.MathFunction. integer -1 modus for piecewise interpolation: -1=not piece-

MathFunction v. wise, 0=constant, 1=linear, 2=quadratic

piecewise__mode

Physics.MathFunction. vector [] supporting points (e.g. time or place) for piece-

MathFunction v. wise interpolation

piecewise points

Physics.MathFunction. vector [] values at supporting points

MathFunction v.

piecewise values

Physics.MathFunction. vector [l differential values at supporting points - for qua-

MathFunction v.
piecewise diff values

dratic interpolation

3.3. CONNECTOR

241

Physics.MathFunction. string m string representing parsed function, e.g.

MathFunction v. "A*sin(omega*t)’

parsed function

Physics.MathFunction. string m string representing parameter of parsed function,

MathFunction v.par- eg. 't/

sed function parameter

Positionl

Position1. integer 1 Number of constrained element

element number

Position1.position vector [0, 0, O] local position. Only used if node _number == 0!

Positionl.node number integer 0 local or global (if element number == 0) node
number.

Position2

Position2. integer 0 Number of constrained element

element number

Position2.position vector [0, 0, 0] local or global (if element number == 0) posi-
tion. Only used if node number == 0!

Position2.node number integer 0 local or global (if element number == 0) node
number.

Observable special values:
For more information see section [3.1]
value name description

Internal. DOF

degrees of freedom (or generalized unknowns) of the
element. range: 1-1

Internal.algebraic variable

algebraic variables of the element. range: 1-1

Controllable special values:

For more information see section B.1]

value name

description

Connector.RigidLink.link length

distance between the connected points (10)

Connector.RigidLink.link velocity

derivative of the distance with respect to time (v)

Example

see file RigidLink.txt

1=0.5%m

m =10 % kg
v=0.1%nm/s

g =9.81 % m/s"2
gravLoad

{

242

load_type = "Gravity"
direction = 3 % z - direction
gravity_constant = g

}
nLoad = AddLoad(gravLoad)

mass
{
element_type = "Mass3D"
loads = [nLoad]

Initialization.initial_position =

CHAPTER 3. HOTINT REFERENCE MANUAL

[1, 0, 0] ¥%initial position

Physics.mass = m %total mass of point mass

}

nMass = AddElement(mass)
%link

rigidLink

{

element_type = "RigidLink"

Physics.distancemode = 2 % link length by modifier

Graphics

{

show_connector = 1
cylinderl_diameter = 0.1
cylinder2_diameter = 0.08
cylinderl_length = 1/2

X

Positionl.element_number = nMass
0 Ynumber of constrained element

Position2.element_number

}
nRigidLink = AddConnector(rigidLink)
time
{
element_type = "IOTime"
Graphics
{

Ynumber of constrained element

position = [-30, 0] Jreference drawing position
draw_size = [20, 20, 0] Ydraw size

by
}
nTime = AddElement(time)
vel
{
element_type = "IOMathFunction"
I0Block
{

input_element_numbers = [nTime]
%1=I0Element

input_element_types = [1]

helement connected to input

input_local_number = [1] %i-th number of output of previous IOelement

MathFunction

3.3. CONNECTOR 243

{
piecewise_mode = 1 Ymodus for piecewise interpolation: 1=linear
piecewise_points = [0,1,2,3] Ysupporting points
piecewise_values = [1,1,2%1,2%1] Yvalues at supporting points
}
}
}
nVel = AddElement(vel)
modifier
{
element_type = "IOElementDataModifier"
Graphics
{

position = [30, 0] Yreference drawing position
draw_size = [20, 20, 0] Ydraw size
}
I0Block
{
input_element_numbers = [nVel] %element connected to input
input_element_types = [1] J1=I0Element
input_local_number = [1] %i-th number of output connected to this element

mod_variable_name = "Connector.RigidLink.link_length" %variable name
mod_element_number = nRigidLink %element number
by
}
AddElement (modifier)

3.3.19 RotatorySpringDamperActuator
Short description

The RotatorySpringDamperActuator connects two elements with rotatory spring, damper and
a constant actuator moment ma. Positive rotation around rotation axis according to right hand
rule. There are different modes available, how the spring and damper moment is calculated. It
is also possible to change the neutral spring angle. This joint is realized in Penalty formulation
only.

Equations
spring angular deflection A¢ = ¢ — ¢y

spring angular velocity w

resultant moment (see section forcemode):
forcemode 0: m =k A¢ +dw + m, (a)
forcemode 1: m =k (A¢) A¢ + d (w) w + m, (b)
forcemode 2: m = my +mg + m, (c)

Limitations

The RotatorySpringDamperActuator should be used together with a RevoluteJoint to avoid
useless simulation results. It is important to ensure that the relative angle of rotation between

244

CHAPTER 3. HOTINT REFERENCE MANUAL

the two bodies must never be greater than +x. This has to be taken into accout when using

an offset angle ¢q.

Description of the different modi

element to ground Position2.element number AND Posi-
tion2.node number have to be equal to 0
element to element Position2.element__number and/or Posi-

tion2.node number must not be equal to 0

forcemode

Physics.forcemode = 0:

Moment is computed as (a) with constant stiffness
and damping factors k£ and d. The factors can be
defined in the two fields in Physics.Linear.
Physics.forcemode — 1:

A MathFunction is used to describe piecewise linear
stiffness k (A¢) and damping d (w), see formula (b)
and Physics.MathFunction.

Physics.forcemode — 2:

2 IOElementDataModifiers describe the moment (c)
due to stiffness and damping. You should use this
mode if full nonlinear behavior is required, e.g. m; =
mg (6,0, w,...) and mg = d (¢, ¢, w, ...).

spring angle offset

It is possible to change the spring angle ¢y (neutral
angle of the spring) during the simulation, e.g. for
the usage of the RotatorySpringDamperActuator as
a rotational actuator. In standard mode the offset
remains constant. The value can be defined in the
field Physics.spring _angle offset. This offset can be
modified by a IOElementDataModifier via ’Connec-
tor.RotatorySpringDamperActuator.angle offset’.

additional actuator moment

In Physics.actuator _torque a constant offset mo-
ment m, can be added.

Figure 3.46: RotatorySpringDamperActuator

Data objects of RotatorySpringDamperActuator:

’ Data name ‘

type

‘ R ‘ default description

element type

string

"RotatorySpringDamperActuator"
specification of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

3.3. CONNECTOR

245

name string "RotatorySpringDamperActuator"
name of the element

element number integer 2 number of the element in the mbs

Graphics

Graphics.show connector | bool 1 Flag to draw connector

Graphics.color _bodyl vector [0.3, 0.8, 0.3] [red, green, blue] first color of constraint, range
= 0..1, use default color:[-1,-1,-1]

Graphics.color _body2 vector [0.7, 0.8, 0.3] [red, green, blue] second color of constraint, range
= 0..1, use default color:[-1,-1,-1]

Graphics.spring _ size double -1 radius of torsional spring. This parameter is used
for drawing only.

Graphics.windings double 10 number of windings of torsional spring. This pa-
rameter is used for drawing only.

Graphics.axis_radius double -1 radius of torsional spring axis (cylinder). This
parameter is used for drawing only.

Physics

Physics. double 0 spring angle offset is used if con-

spring angle offset stant _spring angle offset is enabled. A
positive offset equates a positve angle about the
rotation axis.

Physics.actuator _torque double 0 constant torque of an actuator. A positive tor-
que is acting about the rotation axis in a positive
sense.

Physics.rotation axis vector [0, 0, 0] local axis of rotation w.r.t. body 1 coordinate
system in inital configuration

Physics.forcemode integer 0 defines how the spring and damper moment
is computed: 0..constant coefficient, 1..Mat-
hFunction, 2..I0ElementDataModifier

Physics.Linear

Physics.Linear. double 100 stiffness parameter of the rotatory spring. Only

spring _stiffness used if forcemode is 0.

Physics.Linear.damping double 1 damping coefficient for viscous damping. Only
used if forcemode is 0.

Physics.MathFunction

Physics.MathFunction.MathFunction k

Physics.MathFunction. integer -1 modus for piecewise interpolation: -1=not piece-

MathFunction k. wise, 0=constant, 1=linear, 2=quadratic

piecewise _mode

Physics.MathFunction. vector [] supporting points (e.g. time or place) for piece-

MathFunction k. wise interpolation

piecewise points

Physics.MathFunction. vector [l values at supporting points

MathFunction k.

piecewise values

Physics.MathFunction. vector (] differential values at supporting points - for qua-

MathFunction k. dratic interpolation

piecewise diff values

Physics.MathFunction. string m string representing parsed function, e.g.

MathFunction k. ’A*sin(omega*t)’

parsed _function

Physics.MathFunction. string m string representing parameter of parsed function,

MathFunction k.par- eg. 't/

sed function parameter

Physics.MathFunction.MathFunction d

Physics.MathFunction. integer -1 modus for piecewise interpolation: -1=not piece-

MathFunction d.
piecewise__mode

wise, 0=constant, 1=linear, 2=quadratic

246 CHAPTER 3. HOTINT REFERENCE MANUAL
Physics.MathFunction. vector [] supporting points (e.g. time or place) for piece-
MathFunction d. wise interpolation
piecewise points
Physics.MathFunction. vector [l values at supporting points
MathFunction d.
piecewise values
Physics.MathFunction. vector [l differential values at supporting points - for qua-
MathFunction d. dratic interpolation
piecewise diff values
Physics.MathFunction. string m string representing parsed function,
MathFunction d. ’A*sin(omega*t)’
parsed _function
Physics.MathFunction. string m string representing parameter of parsed function,
MathFunction d.par- eg. 't/
sed function parameter
Positionl
Position1. integer 1 Number of constrained element
element number
Position1.position vector [0, 0, 0] local position. Only used if node number == 0!
Position2
Position2. integer 0 Number of constrained element
element number
Position2.position vector [0, 0, 0] local or global (if element number ==

tion. Only used if node number == 0!

Observable special values:

For more information see section 3.1]
value name description

Internal. DOF

degrees of freedom (or generalized unknowns) of the
element. range: 1-14

Internal.second order variable

second order variables of the element. range: 1-7

Internal.second order variable velocity

velocities of second order variables of the element.
range: 1-7

Connector.force

force applied to the kinematic pairs due to the con-
nector. range: 1-3, corresponds to force in global
x-y-z direction

Connector.moment

internal global moment of connector

Connector.force local

internal local force of connector (joint coordinate sy-
stem JAI)

Connector.moment local

internal local moment of connector (joint coordinate
system JA1)

Connector.displacement

displacement between the joint coordinate systems
JAi and JAj expressed in coordinate system JAi

Connector.angle

bryant angles between the joint coordinate systems
JAi and JAj. All constrained components are zero.

Connector.stiffness matrix

stiffness matrix

Connector.damping matrix

damping matrix

Connector.stiffness matrix rotation

stiffness matrix for rotation

Connector.stiffness matrix damping

damping matrix for rotation

Connector.local position 1

local position on element 1

Connector.local position 2

local position on element 2

Connector.RotatorySpringDamperActuator.moment

internal moment of connector

3.3. CONNECTOR

Controllable special values:

For more information see section B.1]

247

value name

description

Connector.stiffness matrix

stiffness matrix

Connector.damping matrix

damping matrix

Connector.stiffness matrix rotation

stiffness matrix for rotation

Connector.stiffness matrix damping

damping matrix for rotation

Connector.local position 1

local position on element 1

Connector.local position 2

local position on element 2

Connector.RotatorySpringDamperActuator.angle offsgtrescribe the angle offset

Connector.RotatorySpringDamperActuator.spring

opresntribe the stiffness moment

Connector.RotatorySpringDamperActuator.damper mprasmtibe the damping moment

Example

see file RotationalSpringDamperActuator.txt

—
1]

0.5 % m

0.05

10 % kg

Ix = mxr*r/2 ¥ kg*m~2
Iy = mx1x1/3 % kg*m~2
Iz = Iy

m

force

{
load_type = "ForceVector3D"
force_vector = [0,-100,0]
position = [1/2,0,0]
local_force =1

}

nForce = AddLoad(force)

body
{
element_type = "Rigid3D"
loads = [nForce]
Physics
{
mass = m
moment_of_inertia = [Ix,0.,0.;0.,Iy,0.;0
¥
Graphics

{

.,0.,Iz]

RGB_color= [0., 0., 1.] V%l[red, green, bluel

show_element = 1 %Flag to draw element
body_dimensions = [1,r,r]

248 CHAPTER 3. HOTINT REFERENCE MANUAL

}

Initialization.initial_position = [1/2,0,0]
}
nBody = AddElement (body)

revoluteJoint

{
element_type = "RevoluteJoint"
Physics.rotation_axis = [0,0,1]
Graphics.show_connector = 0O

Positionl.element_number = nBody ‘%number of constrained element
Positionl.position = [-1/2,0,0] %local position
Position2.element_number = O Ynumber of constrained element

}

nRevoluteJoint = AddConnector(revoluteJoint)

rotSpringDamperActuator
{
element_type = "RotatorySpringDamperActuator"
Physics
{
forcemode = 2 ¥ force by nonlinear spring
rotation_axis = [0,0,1]
X
Graphics
{
show_connector = 1
by
Positionl.element_number = nBody ‘number of constrained element
Positionl.position = [-1/2,0,0] %local position
Position2.element_number = O %number of constrained element
}

nRotSpringDamperActuator = AddConnector(rotSpringDamperActuator)

phi
{

sensor_type = "ElementSensor"

element_number = nRevoluteJoint

value = "Connector.angle[1]" %about x-axis (joint coordinate system)
}

nPhi = AddSensor(phi)

nonlinearStiffnessMoment
{
element_type = "IOMathFunction"
Graphics
{
position = [0, 0] Vreference drawing position
draw_size = [20, 20, 0] Ydraw size
by
I0Block

3.3. CONNECTOR 249

{

input_element_numbers = [nPhi] %element connected to input

input_element_types = [2] ¥%2=Sensor

input_local_number = [1] %i-th number of output

MathFunction

{

piecewise_mode = 1 Yl=linear

(-1.2,-0.8,-0.5,0,0.5,0.8,1.2] ¥%m, supporting points
[200,100,10,0,-10,-100,-200] %N, values at s. p.

piecewise_points
piecewise_values
}

}

nNonlinearStiffnessMoment = AddElement(nonlinearStiffnessMoment)

modifier
{
element_type = "IOElementDataModifier"
Graphics
{
position = [30, 0] Yreference drawing position
draw_size = [20, 20, 0] Ydraw size
}
I0Block
{

input_element_numbers = [nNonlinearStiffnessMoment] Jelement connected to input
input_element_types = [1] J1=I0Element
input_local_number = [1] %i-th number of output

mod_variable_name = "Connector.RotatorySpringDamperActuator.spring_moment" Jvariable name
mod_element_number = nRotSpringDamperActuator %element number
by
}
AddElement(modifier)

3.3.20 SpringDamperActuator2D

Short description

The SpringDamperActuator2D is a simplified version of the SpringDamperActuator for 2D
elements. Nodes are not supported in the 2D version. Apart from that the constraint has the
same functionality as the 3D version. See the SpringDamperActuator documentation for more
information.

Description of the different modi

element to ground Position2.element number has to be equal to 0

element to element Position2.element number must not be equal to 0

Lagrange If Physics.use penalty formulation = 0, then no
stiffness and no damping parameters are used.

Data objects of SpringDamperActuator2D:

250 CHAPTER 3. HOTINT REFERENCE MANUAL
| Data name | type | R | default description

element type string "SpringDamperActuator2D"
specification of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "SpringDamperActuator2D"
name of the element

element number integer R |2 number of the element in the mbs

Graphics

Graphics.show connector | bool 1 Flag to draw connector

Graphics.color _body1l vector [0.3, 0.8, 0.3] [red, green, blue] first color of constraint, range
= 0..1, use default color:[-1,-1,-1]

Graphics.color _body2 vector [0.7, 0.8, 0.3] [red, green, blue] second color of constraint, range
= 0..1, use default color:[-1,-1,-1]

Graphics. double -1 spring diameter used for drawing only.

spring diameter

Graphics.spring coils double 10 spring coils used for drawing. If set to 0, then a
cylinder with the value ’spring diameter’ as dia-
meter is shown instead of the coils.

Graphics. double -1 damper diameter used for drawing only. If set to

damper diameter 0, then the damper is not shown. It’s recommen-
ded to choose the value smaller then the spring
diameter.

Physics

Physics.spring_length double 0 length of the spring in the initial configuration

Physics.actor force double 0 constant force acting on the spring

Physics.forcemode integer 0 defines how the spring and damper force is com-
puted: 0..constant coefficient, 1..MathFunction,
2..10Element DataModifier

Physics.Linear

Physics.Linear. double 100 stiffness coefficient of the linear spring. Only used

spring _ stiffness if forcemode is 0.

Physics.Linear.damping double 1 damping coefficient for viscous damping. Only
used if forcemode is 0.

Physics.MathFunction

Physics.MathFunction.MathFunction k

Physics.MathFunction. integer -1 modus for piecewise interpolation: -1=not piece-

MathFunction k. wise, 0=constant, 1=linear, 2—quadratic

piecewise__mode

Physics.MathFunction. vector (] supporting points (e.g. time or place) for piece-

MathFunction k. wise interpolation

piecewise points

Physics.MathFunction. vector (] values at supporting points

MathFunction k.

piecewise values

Physics.MathFunction. vector (] differential values at supporting points - for qua-

MathFunction k. dratic interpolation

piecewise diff values

Physics.MathFunction. string m string representing parsed function, e.g.

MathFunction k. ’A*sin(omega*t)’

parsed function

Physics.MathFunction. string m string representing parameter of parsed function,

MathFunction k.par-
sed function parameter

eg. t’

Physics.MathFunction.MathFunction d

3.3. CONNECTOR

251

Physics.MathFunction. integer -1
MathFunction d.
piecewise__mode

modus for piecewise interpolation: -1=not piece-
wise, 0=constant, 1=linear, 2=quadratic

Physics.MathFunction. vector [l
MathFunction d.
piecewise points

supporting points (e.g. time or place) for piece-
wise interpolation

Physics.MathFunction. vector [l
MathFunction d.
piecewise values

values at supporting points

Physics.MathFunction. vector (]
MathFunction d.
piecewise diff values

differential values at supporting points - for qua-
dratic interpolation

nmn

Physics.MathFunction. string
MathFunction d.
parsed _function

string representing parsed function, e.g.
’A*sin(omega*t)’

nn

Physics.MathFunction. string
MathFunction d.par-
sed function parameter

string representing parameter of parsed function,
eg. 't’

Positionl

Position1. integer 1 Number of constrained element

element number

Positionl.position vector [0, 0] local position 1

Position2

Position2. integer 0 Number of constrained element (0 if ground joint)
element number

Position2.position vector [0, 0] local or global position 2

Observable special values:

For more information see section B.1]

value name

description

Internal. DOF

degrees of freedom (or generalized unknowns) of the
element. range: 1-14

Internal.second order variable

second order variables of the element. range: 1-7

Internal.second order variable velocity

velocities of second order variables of the element.
range: 1-7

Connector.SpringDamperActuator.force

resultant force of connector

Connector.force

force applied to the kinematic pairs due to the con-
nector. range: 1-2, corresponds to force in global x-y
direction

Connector.SpringDamperActuator.spring _length

actual spring length

Connector.SpringDamperActuator.spring elongation

elongation of spring

Connector.SpringDamperActuator.spring_ velocity

magnitude of spring velocity

Controllable special values:

For more information see section [3.1]

value name

description

Connector.SpringDamperActuator.spring length off

sgbrescribe the neutral spring length

252 CHAPTER 3. HOTINT REFERENCE MANUAL

Connector.SpringDamperActuator.spring _force prescribe the stiffness force
Connector.SpringDamperActuator.damper _force prescribe the damping force
Example

see file SpringDamperActuator2D.txt

mass

{

element_type= "Mass2D" Yspecification of element type.
Initialization.initial_position= [1, 0.5] %initial position [x,y]

Physics.mass= 1 ¥%total mass of point mass
}

nMass = AddElement(mass)

sda

{

element_type= "SpringDamperActuator2D" Yspecification of element type.
Positionl.element_number= nMass %Number of constrained element

}
nSDA = AddConnector(sda)

3.3.21 PointJoint2D
Short description

The PointJoint2D is a simplified version of the PointJoint for 2D elements. It constrains two
elements at at local element positions. If only one element is specified (second element 0), a
ground PointJoint is realized. It provides both Lagrangian and penalty formulation.

Description of the different modi

element to ground Position2.element number has to be equal to 0

element to element Position2.element number must not be equal to 0

Lagrange If Physics.use penalty formulation = 0, then no
stiffness and no damping parameters are used.

Data objects of PointJoint2D:

| Data name | type | R | default description |

element type string "PointJoint2D" specification of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "PointJoint2D" name of the element

element number integer R 2 number of the element in the mbs

Graphics

Graphics.RGB __color vector [0.3, 0.8, 0.3] [red, green, blue] color of element, range = 0..1,
use default color:[-1,-1,-1]

3.3. CONNECTOR 253

Graphics.show connector | bool 1 Flag to draw connector

Graphics. double -1 drawing dimensions of joint local frame. If set to

draw_size joint local frame -1, then global draw scalar size is used. If set
to 0, then no joint local frame is drawn.

Graphics.draw _size double -1 drawing dimensions of constraint. If set to -1,
then global draw_scalar_size is used.

Geometry

Geometry. bool 0 Use a special joint local frame

use_joint_local frame

Geometry. double 0 Prerotate stiffness vector w.r.t. global coordi-

joint _local frame nate system or local coordinate system of body
1 with angle phi_z about the z axis. Just used if
use_joint_local frame ==

Geometry. bool 0 O=use global coordinates, 1=use local coordinate

use local coordinate system system of Body 1

Physics

Physics. bool 0 0 = use lagrange multipliers (index 3 DAE, ex-

use_penalty formulation act), 1 = use penalty formulation (no additional

equation added, approximate constraint)

Physics.Penalty

Physics.Penalty. double 1e+-008 general or penalty stiffness parameter

spring stiffness

Physics.Penalty. vector [0, O] penalty stiffness parameter [kxky]. Just

spring_stiffness _vector used if scalar spring stiffness == 0, otherwise
kx=ky=spring_stiffness

Physics.Penalty.damping double 1 damping coefficient for viscous damping (F =

d*v), applied in all constrained directions

Physics.Lagrange

Physics.Lagrange. vector [1, 1] [x,y]...(1 = constrained, 0 = free), can be defined
constrained directions as local or global directions (see Geometry)
Positionl

Position1. integer 1 Number of constrained element

element number

Position1.position vector [0, O] local position 1

Position2

Position2. integer 0 Number of constrained element (0 if ground joint)
element number

Position2.position vector [0, 0] local or global position 2

Observable special values:

For more information see section B.1]

value name description

Internal. DOF degrees of freedom (or generalized unknowns) of the
element. range: 1-2

Internal.algebraic_variable algebraic variables of the element. range: 1-2

Connector.force force applied to the kinematic pairs due to the con-
nector. range: 1-2, corresponds to force in global x-y
direction

254 CHAPTER 3. HOTINT REFERENCE MANUAL

Example

see file PointJoint2D.txt

grav
{
load_type= "Gravity" Yspecification of load type.
direction= 1 Yglobal direction of the gravity
gravity_constant= 9.81 Yuse negative sign if necessary
b
nLoad = AddLoad(grav)

mass
{
element_type= "Mass2D" Yspecification of element type.
loads= [nLoad]
Initialization.initial_position= [1, 0.5] %initial position [x,y]
Physics.mass= 1 Ytotal mass of point mass
X

nMass = AddElement (mass)

sda
{
element_type= "PointJoint2D" Yspecification of element type.
Positionl.element_number= nMass ¥Number of constrained element
}
nSDA = AddConnector (sda)

3.4. CONTROL ELEMENTS 255

3.4 Control elements
These control elements are available:
e IODiscreteTransferFunction, [3.4.1]
e 1ODigitalFilter, [3.4.2]

e [ORandomSource, [3.4.3

e IOLinearTransformation, [3.4.4]

e I0Quantizer, [3.4.5

e I0ContinuousTransferFunction, [3.4.6]
e [OLinearODE,

e IOMathFunction, [3.4.§|

e [OSaturate, [3.4.9

e [ODeadZone, 3.4.10

e IOProduct, [3.4.1]]

o [0Time, B-1.17]

e IOPulseGenerator,

e IOTimeWindow,

e [OStopComputation, [3.4.15
e [OElementDataModifier, [3.4.16

e [ODisplay, [3.4.17

e [0Graph3D, [3.4.18
e [OMinMax, [3.4.19
e [OTCPIPBIock, [3.4.20

e 10X2C, 3.4.21
e [OLinearTransducer, |3.4.22

Control elements are connectors which have input- and/or output-ports.

Note:

In HOTINT several classes are treated as ’elements’. Connectors and control elements are also
‘elements’, and can therefore be edited and deleted in the GUI with the menu items of the
elements.

In the script language the command AddConnector has to be used for connectors and also for
the control elements in the list above.

256 CHAPTER 3. HOTINT REFERENCE MANUAL

3.4.1 I0ODiscreteTransferFunction
Short description
Discontinuous transfer function in z-space. It is a SISO (single input-single output) control

element. Inital state is zero.

Equations
y(2) = G(2)u(z)

G(2) = Gen

user input:

num(z) = num; + numsz + numsz> + ... + num, 12"

den(z) = deny + denyz + denzz® + ... + deny, 12"

Theoretical background: Realization of z-transfer function as time discrete state space model

k41,1 %k,1

0 . . 0 —dem num, — nuM,1deny
1 0 . 0 —deny)
=)) + up (3.30)
0 0 . 1 —den, ' num, — NUMy, L 1den,
| Zk+1,n i | Zk,n i
Yk = Zkn + NUMp 11U, (3.31)

® 7Fen ®

[ODiscreteTransferFunction

Figure 3.47: 10DiscreteTransferFunction

Data objects of IODiscreteTransferFunction:

| Data name | type | R | default description

element type string "IODiscreteTransferFunction"

type anymore!

specification of element type. Once the element
is added to the mbs, you MUST NOT change this

name string "IODiscreteTransferFunction"
name of the element

3.4. CONTROL ELEMENTS

257

\ element number \ integer \ R \ 1 number of the element in the mbs

Graphics

Graphics.show connector | bool 1 Flag to draw connector

Graphics.position vector 0, 0] reference drawing position

Graphics.draw _size vector 20, 20, 0] draw size

Graphics.rotation double 0 rotation: 1==90f, 2==180F, 3==270%, 4=360F

Graphics. vector [-1, -1, -1] background color; -1=transparent

background color

Graphics. vector [0, 0, O] foreground color

foreground _color

Graphics. vector (] number of input of drawing position "in-

input _nodes num put_nodes"

Graphics.input_nodes matrix (]

I0Block

IOBlock. integer R |0 number of inputs

number of inputs

IOBlock. integer 0 number of outputs

number_of outputs

IOBlock. integer 0 number of states

number_of _states

IOBlock. vector (] vector of element(s) or sensor number(s) con-

input _element numbers nected to input, only valid element numbers per-
mitted!

I0Block. vector (] vector with types of connected inputs; 1=IOEle-

input _element types ment, 2=Sensor

IOBlock. vector (] vector with i-th number of output of previous

input_local number IOelement connected to this element

IOBlock. double 0 Sample time dT

discrete time step

I0Block. double 0 Sample offset off: Tk — k*dT + off

discrete time offset

IOBlock.num _ coefts vector [1] Coefficients of numerator polynomial of z-
function

IOBlock.den_ coeffs vector [1] Coefficients of denominator polynomial of z-
function

Observable special values:

For more information see section B.1]

IOBlock.output IOBlock.output[i] ... measures the i-th output of this
IOBlock, if available
IOBlock.input IOBlock.inputl[i] ... access to the i-th input of this
IOBlock, if available
Example

value name

description

Internal.data_variable

data varibales of the element which are no degrees of
freedom (e.g. inelastic strain, contact state, friction
state, etc.). range: 1-2

see file ZTransferFunction.txt

258 CHAPTER 3. HOTINT REFERENCE MANUAL

Include("addTime.txt")

ztransferfunction
{
element_type = "IODiscreteTransferFunction"
I0Block
{
input_element_numbers = [nTime]
input_element_types = [1]

input_local_number = [1]
discrete_time_step = 0.5
by
Graphics
{
position = [50,0]
by

}

nZTransferFunction = AddElement (ztransferfunction)

nSens = nZTransferFunction
nDisp

nZTransferFunction

Include("addSens.txt")
Include("addDisplay.txt")

3.4.2 10DigitalFilter
Short description
A digital (highpass or lowpass) filter of 2nd order.

Equations

The filter is fully defined by the following parameters:

e fc, cut off frequency in Hz
e fs = 1/deltaT, sampling frequency
e ()-factor, see remarks below

The Q-factor is influencing the damping of the filter, the following values are important:

e Q=0.5 critically damped

e Q<0.5 overdamped

e Q=1/sqrt(2) Butterworth

e Q=1/sqrt(3) Bessel

The coefficients of the 2nd order discrete transfer function are computed automatically in this

IOBlock

Description of the different modi

3.4. CONTROL ELEMENTS

259

lowpass (default)

the flag highpass is set to 0.

highpass

the flag highpass has to be set to 1

O

Expression Filter
10Time IOMathFunction I0DigitalFilter
Figure 3.48: I0ODigitalFilter
Data objects of IODigitalFilter:
’ Data name ‘ type ‘ R ‘ default description
element type string "IODigitalFilter"
specification of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!
name string "IODigitalFilter"
name of the element
element number integer R 1 number of the element in the mbs
Graphics
Graphics.show connector | bool 1 Flag to draw connector
Graphics.position vector 0, 0] reference drawing position
Graphics.draw _size vector 20, 20, 0] draw size
Graphics.rotation double 0 rotation: 1==90%, 2==180F, 3==270%, 4=360F
Graphics. vector [-1, -1, -1] background color; -1=transparent
background _color
Graphics. vector [0, 0, 0] foreground color
foreground _color
Graphics. vector (] number of input of drawing position "in-
input _nodes num put_nodes"
Graphics.input_nodes matrix [l
I0Block
IOBlock. integer R |0 number of inputs
number of inputs
IOBlock. integer 1 number of outputs
number_of outputs
IOBlock. integer 0 number of states
number_of _states
IOBlock. vector (] vector of element(s) or sensor number(s) con-
input_element numbers nected to input, only valid element numbers per-
mitted!
IOBlock. vector [l vector with types of connected inputs; 1=I0Ele-
input_element _types ment, 2=Sensor
IOBlock. vector (] vector with i-th number of output of previous
input local number IOelement connected to this element
IOBlock. double 0.001 Sample time dT
discrete time step
IOBlock.highpass bool 0 1..highpass, 0..lowpass
IOBlock.fc double 100 cut off frequency of filter in Hz
IOBlock.Q double 0.707 Q-factor: Q = 0.5..critically damped, Q smaller
0.5..overdamped

260 CHAPTER 3. HOTINT REFERENCE MANUAL

IOBlock.num _ coeffs vector R | [0.0675, 0.135,
0.0675] Coefficients of numerator polynomial of z-
function
IOBlock.den_ coeffs vector R | [0.413, -1.14, 1]
Coefficients of denominator polynomial of z-
function
Observable special values:
For more information see section
value name description
Internal.data_variable data varibales of the element which are no degrees of

freedom (e.g. inelastic strain, contact state, friction
state, etc.). range: 1-4

IOBlock.output IOBlock.output[i] ... measures the i-th output of this
IOBlock
10Block.input IOBlock.input[i] ... access to the i-th input of this

IOBlock, if available

Example

see file IODigitalFilter.txt

Time.element_type= "I0Time"
nETime = AddElement (Time)

Signal

{
element_type= "IOMathFunction"
Graphics.position= [50, 0]
I0Block.input_element_numbers= [nETime]
I0Block.input_element_types= [1] % 1=I0Element
I0Block.input_local_number= [1]
I0Block.MathFunction.parsed_function= "10*sin(2%pi*5xt)+2*sin(2*pi*300*t)"
TI0Block.MathFunction.parsed_function_parameter= "t"

}

nESig=AddElement(Signal)

Filter

{
element_type= "IODigitalFilter"
Graphics.position= [100, 0]
I0Block.input_element_numbers= [nESig]
I0Block.input_element_types= [1] 7 1=I0Element
I0Block.input_local_number= [1]
I0Block.discrete_time_step= 0.001 ¥%Sample time dT
I0Block.fc= 10 Ycut off frequency of filter in Hz
I0Block.Q= 0.7 ¥%Q-factor

3.4. CONTROL ELEMENTS 261

¥
nEFilt=AddElement (Filter)

SensorQutput

{
sensor_type= "ElementSensor"
element_number= nESig
value= "IOBlock.output[1]"

}
AddSensor (SensorQutput)

SensorOutput.element_number= nEFilt
AddSensor (SensorOutput)

3.4.3 IORandomSource
Short description

Discontinuous random source using alternatively an internal C++ based pseudo random gene-
rator or a linear feedback shift register. It has no input and one output.

Description of the different modi

method 0 IOBlock.method must be set to 0. The built-in
random generator is used.

method 1 IOBlock.method must be set to 1. Generate a pseudo
random binary signal by using Linear Feedback Shift
Register.

Random %

IORandomSaurce

Figure 3.49: TORandomSource

Data objects of IORandomSource:

’ Data name ‘ type ‘ R ‘ default description

element type string "TORandomSource"

specification of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

262 CHAPTER 3. HOTINT REFERENCE MANUAL
name string "TORandomSource"
name of the element
element number integer 1 number of the element in the mbs
Graphics
Graphics.show connector | bool 1 Flag to draw connector
Graphics.position vector 0, 0] reference drawing position
Graphics.draw _size vector 20, 20, 0] draw size
Graphics.rotation double 0 rotation: 1==90%, 2==180F, 3==270¢, 4=360F
Graphics. vector [-1, -1, -1] background color; -1=transparent
background _color
Graphics. vector [0, 0, 0] foreground color
foreground color
Graphics. vector (] number of input of drawing position "in-
input _nodes num put_nodes"
Graphics.input_nodes matrix []
I0Block
IOBlock. integer 0 number of inputs
number_of inputs
IOBlock. integer 0 number of outputs
number_of outputs
IOBlock. integer 0 number of states
number of states
IOBlock. double 0 Sample time dT
discrete time_step
IOBlock. double 0 Sample offset off: Tk = k*dT + off
discrete _time offset
IOBlock.max amplitude | double 0 Max. amplitude of random value.
IOBlock.mean value double 0 Offset of random signal.
IOBlock.method bool 0 Random generator method.
IOBlock.bits integer 15 Number of bits for random signal.
IOBlock. bool 0 Output values are +amplitude or -amplitude if
constant _amplitude flag is activate.
IOBlock.seed double 0 seed A [0.,1.]... initialization of random generator
IOBlock.init_ val double 0 initial value of the generator x(t=0) = y(t=0)

Observable special values:

For more information see section B.1]

value name

description

Internal.data_variable

data varibales of the element which are no degrees of
freedom (e.g. inelastic strain, contact state, friction
state, etc.). range: 1-1

IOBlock.output IOBlock.outputl[i] ... measures the i-th output of this
IOBlock, if available
TIOBlock.input IOBlock.inputl[i] ... access to the i-th input of this
IOBlock, if available
Example

see file addRandomSource.txt

3.4. CONTROL ELEMENTS 263

random
{
element_type = "IORandomSource"
I0Block
{
discrete_time_step = 0.05
discrete_time_offset 0.0
max_amplitude = 2
mean_value =2.5
method = 1
bits = 15
constant_amplitude = 0
seed = 0.5
init_val = 2.5

}
Graphics

{

position = [0,-50]
}

}
nRandom = AddElement (random)

3.4.4 IOLinearTransformation
Short description
Continuous linear transformation. The transfer function type is SISO (single input-single out-
put) or MIMO (multi input-multi output).
Equations
y = Au+Db; (3.32)

Matrix A and vector b are user defined.

Description of the different modi

linear transformation y = Au Set b to zero.
gain y; = Ay 1u; Set A as scalar value and b is zero.
constant y; = by Set A to zero and b to the constant value.

264

CHAPTER 3.

* y=Ax+b

[OLinearTransformation

HOTINT REFERENCE MANUAL

Figure 3.50: IOLinearTransformation

Data objects of IOLinearTransformation:

’ Data name ‘ type ‘ R ‘ default description
element type string "TOLinearTransformation"
specification of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!
name string "IOLinearTransformation"
name of the element
element number integer R 1 number of the element in the mbs
Graphics
Graphics.show connector | bool 1 Flag to draw connector
Graphics.position vector 0, 0] reference drawing position
Graphics.draw _size vector 20, 20, 0] draw size
Graphics.rotation double 0 rotation: 1==90f, 2==180%, 3==270%, 4=360t
Graphics. vector [-1, -1, -1] background color; -1=transparent
background _color
Graphics. vector [0, 0, O] foreground color
foreground _color
Graphics. vector (] number of input of drawing position "in-
input _nodes_num put_nodes"
Graphics.input_nodes matrix (]
I0Block
IOBlock. integer 0 number of inputs
number of inputs
IOBlock. integer R |4 number of outputs
number of outputs
IOBlock. integer 0 number of states
number_of _states
IOBlock. vector (] vector of element(s) or sensor number(s) con-
input__element numbers nected to input, only valid element numbers per-
mitted!
I0Block. vector (] vector with types of connected inputs; 1=IOEle-
input _element types ment, 2=Sensor
IOBlock. vector (] vector with i-th number of output of previous
input_local number IOelement connected to this element
IOBlock.A _matrix matrix [0, 0, 0, 0; 0, O,
0,0;0,0,0,0;0, transformation matrix A: y=A.u+b
0, 0, 0]
IOBlock.b_vector vector [0, 0, 0, O] offset vector b: y=A.u+b

3.4. CONTROL ELEMENTS 265

Observable special values:

For more information see section

value name description

IOBlock.output IOBlock.output[i] ... measures the i-th output of this
IOBlock

IOBlock.input IOBlock.inputl[i] ... access to the i-th input of this
IOBlock, if available

Example

see file LinearTransformation.txt

Include("addTime.txt")

transformation
{
element_type = "IOLinearTransformation"
Graphics
{
position = [60, 0] Yreference drawing position
}
I0Block
{
input_element_numbers = [nTime]
input_element_types = [1]
input_local_number = [1]
A_matrix = [2]
b_vector = [0.5]
}
}

nTrans = AddElement (transformation)

nSens = nTrans
nDisp = nTrans

Include("addSens.txt")
Include("addDisplay.txt")

3.4.5 I0Quantizer

Short description

A quantizer block passes its input signal through a stair-step function so that many neighboring
points on the input axis are mapped to one point on the output axis. The effect is to quantize
a smooth signal into a stair-step output. It is a SISO (single input-single output) control
element.

266

Equations

y(u)

r floor (’f + 0.57“) , ifrl=0

u,

The user defined rounding value is r.

Data objects of IOQuantizer:

CHAPTER 3. HOTINT REFERENCE MANUAL

Cuant.

|CQuantizer

3.33
ifr=20 ()

Figure 3.51: IOQuantizer

‘ Data name ‘ type ‘ R ‘ default description

element type string "TOQuantizer" specification of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "TOQuantizer" name of the element

element number integer R |1 number of the element in the mbs

Graphics

Graphics.show connector | bool 1 Flag to draw connector

Graphics.position vector 0, 0] reference drawing position

Graphics.draw _size vector 20, 20, 0] draw size

Graphics.rotation double 0 rotation: 1==901, 2==180fF, 3==270t, 4=360t

Graphics. vector [-1, -1, -1] background color; -1=transparent

background _color

Graphics. vector [0, 0, 0] foreground color

foreground color

Graphics. vector (] number of input of drawing position "in-

input _nodes num put_nodes"

Graphics.input_nodes matrix [l

I0Block

IOBlock. integer R |0 number of inputs

number_of inputs

IOBlock. integer 0 number of outputs

number_of outputs

IOBlock. integer 0 number of states

number of states

IOBlock. vector (] vector of element(s) or sensor number(s) con-

input_element numbers nected to input, only valid element numbers per-
mitted!

IOBlock. vector [] vector with types of connected inputs; 1=IOEle-

input_element _types ment, 2=Sensor

IOBlock. vector (] vector with i-th number of output of previous

input local number IOelement connected to this element

IOBlock.rounding value | double 0.1 Max. amplitude of random value.

3.4. CONTROL ELEMENTS 267

Observable special values:

For more information see section

value name description

IOBlock.output IOBlock.output[i] ... measures the i-th output of this
IOBlock, if available

IOBlock.input IOBlock.inputl[i] ... access to the i-th input of this
IOBlock, if available

Example
see file Quantizer.txt

Include("addTime.txt")

quantizer
{
element_type = "IOQuantizer"
I0Block
{
rounding_value = 0.2
input_element_numbers = [nTime]
input_element_types = [1]
input_local_number = [1]
}
Graphics
{
position = [50,0]
}
}

nQuantizer = AddElement(quantizer)

nSens = nQuantizer
nDisp

nQuantizer

Include("addSens.txt")
Include("addDisplay.txt")

3.4.6 I0ContinuousTransferFunction
Short description
The STransferFunction is a linear transfer function for continuous state-space elements. It is a

SISO (single input-single output) type.

Equations

y(s) = G(s)u(s)

G(S) _ num(s)

den(s)

user input:

num(s) = numy + numss + numss® + ... + num,, ;1"

CHAPTER 3. HOTINT REFERENCE MANUAL

den(s) = deny + denys + denzs® + ... + den, 15"

Data objects of IOContinuousTransferFunction:

S-Fen

|QContinuousTransferFunction

Figure 3.52: TOContinuousTransferFunction

‘ Data name ‘ type ‘ R ‘ default description

element _type string "IOContinuousTransferFunction"
specification of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "TOContinuousTransferFunction"
name of the element

element number integer R 1 number of the element in the mbs

Graphics

Graphics.show connector | bool 1 Flag to draw connector

Graphics.position vector 0, 0] reference drawing position

Graphics.draw _size vector 20, 20, 0] draw size

Graphics.rotation double 0 rotation: 1==90f, 2==180F, 3==270¢, 4=360F

Graphics. vector [-1, -1, -1] background color; -1=transparent

background _color

Graphics. vector [0, 0, O] foreground color

foreground _color

Graphics. vector (] number of input of drawing position "in-

input _nodes_num put_nodes"

Graphics.input_nodes matrix (]

I0Block

IOBlock. integer R |0 number of inputs

number of inputs

IOBlock. integer 1 number of outputs

number of outputs

IOBlock. integer 3 number of states

number_of _states

IOBlock. vector (] vector of element(s) or sensor number(s) con-

input _element numbers nected to input, only valid element numbers per-
mitted!

I0Block. vector (] vector with types of connected inputs; 1=IOEle-

input _element types ment, 2=Sensor

3.4. CONTROL ELEMENTS

269

IOBlock. vector []
input_local number

vector with i-th number of output of previous
IOelement connected to this element

IOBlock.numerator vector [1, 0, 0, 0]

ascending numerator coefficients n of transfer-
function. TF = num/den with num =
n(1)*14n(2)*s+n(3)*s*s+... Will be normalized
automatically!

IOBlock.denominator vector [0, 0, 0, 1]

ascending denominator coeffs d of transfer-
function. TF = num/den with den =
d(1)*14-d(2)*s+d(3)*s*s+... Will be normalized
automatically!

Observable special values:

For more information see section B.1]

value name description

Internal. DOF degrees of freedom (or generalized unknowns) of the
element. range: 1-3

Internal.first _order variable first order variables of the element. range: 1-3

IOBlock.output IOBlock.outputl[i] ... measures the i-th output of this
IOBlock

IOBlock.input IOBlock.input[i] ... access to the i-th input of this
IOBIlock, if available

Example

see file STransferFunction.txt

Include("addTime.txt")

stransferfunction
{
element_type = "IOContinuousTransferFunction"
I0Block
{
input_element_numbers = [nTime]
input_element_types = [1]
input_local_number = [1]
}
Graphics
{
position = [50,0]
}
}

nSTransferFunction = AddElement (stransferfunction)

nSens = nSTransferFunction
nDisp = nSTransferFunction

Include("addSens.txt")

270

Include("addDisplay.txt")

3.4.7 I0LinearODE
Short description

CHAPTER 3. HOTINT REFERENCE MANUAL

The LinearODE Element represents a linear ordinary differential equation of SISO (single input-

single output) or MIMO (multi input-multi output) type.

Equations
x=Ax+Bu
y=Cx+Du

Matrices A, B, C and D are user defined.

*

lin ODE

[OLinearCDE

Figure 3.53: IOLinearODE

Data objects of IOLinearODE:

] Data name \ type \ R \ default description

element_type string "TOLinearODE" specification of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "IOLinearODE" name of the element

element number integer R 1 number of the element in the mbs

Graphics

Graphics.show connector | bool 1 Flag to draw connector

Graphics.position vector 0, 0] reference drawing position

Graphics.draw _size vector 20, 20, 0] draw size

Graphics.rotation double 0 rotation: 1==90t, 2==180F, 3==2701, 4=360t

Graphics. vector [-1, -1, -1] background color; -1=transparent

background _color

Graphics. vector [0, 0, O] foreground color

foreground color

Graphics. vector [l number of input of drawing position "in-

input _nodes_num put_nodes"

Graphics.input_nodes matrix (]

I0Block

IOBlock. integer R |0 number of inputs

number of inputs

3.4. CONTROL ELEMENTS

271

IOBlock. integer R |0 number of outputs

number_of outputs

IOBlock. integer R |0 number of states

number_of _states

IOBlock. vector (] vector of element(s) or sensor number(s) con-

input_element numbers nected to input, only valid element numbers per-
mitted!

I0Block. vector (] vector with types of connected inputs; 1=IOEle-

input _element types ment, 2=Sensor

IOBlock. vector (] vector with i-th number of output of previous

input local number IOelement connected to this element

IOBlock.A _coeffs matrix [0] Coefficients of state matrix A, x_dot = A*x +
B*u

IOBlock.B _ coeffs matrix [0] Coefficients of input matrix B, x_dot = A*x +
B*u

IOBlock.C _coeffs matrix 0 Coefficients of output matrix C, y = C*x + D*u

IOBlock.D _coeffs matrix 0 Coefficients of output matrix D, y = C*x + D*u

IOBlock.initital _vector vector | Initial values of time-domain variables

Observable special values:

For more information see section B.1]

value name description
IOBlock.output IOBlock.output[i] ... measures the i-th output of this
IOBIlock, if available
IOBlock.input IOBlock.input[i] ... access to the i-th input of this
IOBlock, if available
Example

see file LinearODE.txt

Include("addTime.txt")

1
{

in

element_type = "IOLinearODE"

Graphics
{
position = [50, O]
}
I0Block
{

Jreference drawing position

input_element_numbers = [nTime]

input_element_types
input_local_number

A_coeffs = [1]
B_coeffs = [1]
C_coeffs = [1]

= [1]
= [1]

272

D_coeffs = [1]
initital_vector = [1]

3

T

nLin = AddElement(lin)
nSens = nLin

nDisp = nLin

Include("addSens.txt")
Include("addDisplay.txt")

3.4.8 IOMathFunction
Short description

CHAPTER 3. HOTINT REFERENCE MANUAL

A TOMathFunction contains a mathematical expression with functions and logical operators
or a lookup table with different modes for piecewise interpolation. The output is result of the
evalutation of the MathFunction as a function of input.

Description of the different modi

parsed function

In order to wuse the parser for mat-
hematical expressions, the variable IO-
Block.MathFunction.piecewise _mode has to be set
to —1. In IOBlock.MathFunction.parsed function
one specifies a string representing par-
sed function, e.g. A« sin(u)’ with
function parameter w defined in IO-
Block.MathFunction.parsed _function parameter.

piecewise mode - constant

IOBlock.MathFunction.piecewise _mode

must be set to 0. The vectors I0-
Block.MathFunction.piecewise _points and IO-
Block.MathFunction.piecewise values are used.
The output value is piecewise constant with jumps
at the supporting points.

piecewise mode - linear

IOBlock.MathFunction.piecewise mode

must be set to 1. The vectors I0O-
Block.MathFunction.piecewise points and IO-
Block.MathFunction.piecewise values are used.
The output value is piecewise linear between the
supporting points.

piecewise mode - quadratic

IOBlock.MathFunction.piecewise _mode

must be set to 2 and in addition to
the other piecwise modes the vector IO-
Block.MathFunction.piecewise _diff values is
needed. The output is a quadratic interpolation
between the supporting points.

3.4. CONTROL ELEMENTS

*

Expression

[OMathFunction

273

Figure 3.54: IOMathFunction

Data objects of IOMathFunction:

| Data name | type | R | default description

element type string "TOMathFunction"
specification of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "TOMathFunction"
name of the element

element number integer R 1 number of the element in the mbs

Graphics

Graphics.show connector | bool 1 Flag to draw connector

Graphics.position vector 0, 0] reference drawing position

Graphics.draw _size vector 20, 20, 0] draw size

Graphics.rotation double 0 rotation: 1==90t, 2==180F, 3==270t, 4=3601

Graphics. vector [-1, -1, -1] background color; -1=transparent

background _color

Graphics. vector [0, 0, O] foreground color

foreground _color

Graphics. vector [l number of input of drawing position "in-

input _nodes_num put_nodes"

Graphics.input_nodes matrix (]

I0Block

IOBlock. integer 0 number of inputs

number of inputs

IOBlock. integer 1 number of outputs

number of outputs

IOBlock. integer R |0 number of states

number_of _states

IOBlock. vector (] vector of element(s) or sensor number(s) con-

input__element numbers nected to input, only valid element numbers per-
mitted!

I0Block. vector (] vector with types of connected inputs; 1=IOEle-

input__element _types ment, 2=Sensor

IOBlock. vector (] vector with i-th number of output of previous

input_local number IOelement connected to this element

I0Block.MathFunction

IOBlock.MathFunction. integer -1 modus for piecewise interpolation: -1=not piece-

piecewise mode wise, 0=constant, 1=linear, 2—quadratic

IOBlock.MathFunction. vector [l supporting points (e.g. time or place) for piece-

piecewise _points wise interpolation

274 CHAPTER 3. HOTINT REFERENCE MANUAL
IOBlock.MathFunction. vector [] values at supporting points
piecewise values
I0Block.MathFunction. vector (] differential values at supporting points - for qua-
piecewise diff values dratic interpolation
IOBlock.MathFunction. string m string representing parsed function, e.g.
parsed function ’A*sin(omega*t)’
IOBlock.MathFunction. string m string representing parameter of parsed function,
par- e.g. 't/
sed function parameter

Observable special values:

For more information see section 3.1]
value name description

Internal.data_variable

data varibales of the element which are no degrees of
freedom (e.g. inelastic strain, contact state, friction
state, etc.). range: 1-1

TIOBlock.output IOBlock.output|[i] ... measures the i-th output of this
IOBlock
IOBIlock.input IOBlock.input[i] ... access to the i-th input of this
IOBlock, if available
Example

see file IOMathFunction.txt

Time

{

element_type= "I0Time"

3

nTime = AddElement (Time)

% IOMathfunction with one input piecewise

I0Block
{

element_type= "IOMathFunction"
Graphics.position= [50, 0]

I0Block
{

input_element_numbers= [nTime]
input_element_types= [1]

input_local_number=

MathFunction

{
pilecewise_mode= O
piecewise_points=
piecewise_values=

by

}

[1]

[0, 1, 1.5, 2]
o, 1, 0.7, 01

3.4. CONTROL ELEMENTS

¥

nElem = AddElement (I0Block)
SensorQutput

{

sensor_type= "ElementSensor"
element_number= nElem
value= "IOBlock.output[1]"

}

AddSensor (SensorQutput)

275

% I0Mathfunction with multiple inputs and parsed function

I0Block

{

element_type= "IOMathFunction"

Graphics.position= [100, 0]

I0Block

{
input_element_numbers= [nTime, nTime]
input_element_types= [1, 1]
input_local_number= [1, 1]
MathFunction

{

piecewise_mode= -1
parsed_function = "ux((v>4)&&(v<6))"
parsed_function_parameter = "u,v"
}
}

}
nElem = AddElement (I0Block)

SensorOutput.element_number = nElem
AddSensor (SensorOutput)

3.4.9 IOSaturate
Short description

Continuous saturation element for upper and lower limits.
output) control element.

Equations

ul, if u > ul
y(u) =qu, ifll<u<ul
0, ifu<ll

It is a SISO (single input-single

(3.34)

In the defined equation ul is the upper limit and [l is the lower limit.

276

Data objects of IOSaturate:

CHAPTER 3. HOTINT REFERENCE MANUAL

® Saturate

&

|OSaturate

Figure 3.55: IOSaturate

| Data name | type | R | default description |

element type string "TOSaturate" specification of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "TOSaturate" name of the element

element _number integer R 1 number of the element in the mbs

Graphics

Graphics.show connector | bool 1 Flag to draw connector

Graphics.position vector 0, 0] reference drawing position

Graphics.draw _size vector 20, 20, 0] draw size

Graphics.rotation double 0 rotation: 1==90%, 2==180F, 3==270¢, 4=360F

Graphics. vector [-1, -1, -1] background color; -1=transparent

background _color

Graphics. vector [0, 0, 0] foreground color

foreground _color

Graphics. vector (] number of input of drawing position "in-

input _nodes num put_nodes"

Graphics.input_nodes matrix [l

I0Block

IOBlock. integer 0 number of inputs

number of inputs

IOBlock. integer R |0 number of outputs

number_of outputs

IOBlock. integer R |0 number of states

number_of _states

IOBlock. vector (] vector of element(s) or sensor number(s) con-

input_element numbers nected to input, only valid element numbers per-
mitted!

IOBlock. vector [l vector with types of connected inputs; 1=I0Ele-

input_element types ment, 2=Sensor

IOBlock. vector (] vector with i-th number of output of previous

input local number IOelement connected to this element

IOBlock.upper_limit double 0.1 Upper limit of saturate.

IOBlock.lower limit double 0 Lower limit of saturate.

3.4. CONTROL ELEMENTS 277

Observable special values:

For more information see section

value name description

IOBlock.output IOBlock.outputl[i] ... measures the i-th output of this
IOBlock, if available

IOBlock.input IOBlock.input[i] ... access to the i-th input of this
IOBIlock, if available

Example

see file Saturate.txt

Include("addTime.txt")

saturate
{
element_type = "IOSaturate"
I0Block
{
upper_limit = 2.6
lower_limit = 2.4
input_element_numbers = [nTime]
input_element_types = [1]
input_local_number = [1]

}

Graphics

{

position = [50,0]

}
}
nSaturate = AddElement (saturate)
nSens = nSaturate
nDisp = nSaturate

Include("addSens.txt")
Include("addDisplay.txt")

3.4.10 I0DeadZone
Short description

Continuous dead-zone element. The outputs between upper and lower limit is zero. This leads
to an offset of the input signal by the corresponding lower or upper limit. It is a SISO (single
input-single output) control element.

278 CHAPTER 3. HOTINT REFERENCE MANUAL

Equations

u—sd, ifu<sd
y(u) =<0, if u> sd and u < ed (3.35)
u—ed, ifu>ed

In the defined equation sd is the start dead-zone value, ed is the end dead-zone value.

® DeadZone ¥

[0DeadZone

Figure 3.56: I0DeadZone

Data objects of IODeadZone:

] Data name \ type \ R \ default description ‘

element type string "IODeadZone" specification of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "TODeadZone" name of the element

element number integer R 1 number of the element in the mbs

Graphics

Graphics.show connector | bool 1 Flag to draw connector

Graphics.position vector 0, 0] reference drawing position

Graphics.draw _size vector 20, 20, 0] draw size

Graphics.rotation double 0 rotation: 1==90f, 2==180F, 3==270¢, 4—=360F

Graphics. vector [-1, -1, -1] background color; -1=transparent

background _color

Graphics. vector [0, 0, O] foreground color

foreground _color

Graphics. vector (] number of input of drawing position "in-

input _nodes_num put_nodes"

Graphics.input_nodes matrix (]

I0Block

IOBlock. integer R |0 number of inputs

number of inputs

IOBlock. integer R |1 number of outputs

number of outputs

IOBlock. integer R |0 number of states

number_of _states

IOBlock. vector (] vector of element(s) or sensor number(s) con-

input__element numbers nected to input, only valid element numbers per-
mitted!

I0Block. vector (] vector with types of connected inputs; 1=IOEle-

input _element types ment, 2=Sensor

3.4. CONTROL ELEMENTS

279

IOBlock. vector (] vector with i-th number of output of previous
input local number IOelement connected to this element
IOBlock.start deadzone double 0 Start of dead zone.

IOBlock.end deadzone double 0 End of dead zone.

Observable special values:

For more information see section

value name description
IOBlock.output IOBlock.output[i] ... measures the i-th output of this
TIOBlock
IOBlock.input IOBlock.input[i] ... access to the i-th input of this
IOBlock, if available
Example

see file DeadZone.txt

Include("addTime.txt")

deadzone
{
element_type = "IODeadZone"
I0Block
{
start_deadzone = 1
end_deadzone = 2
input_element_numbers = [nTime]
input_element_types = [1]
input_local_number = [1]
}
Graphics
{
position = [50,0]
}
}
nDeadZone = AddElement(deadzone)

nSens = nDeadZone
nDisp = nDeadZone

Include("addSens.txt")
Include("addDisplay.txt")

280

3.4.11 1IOProduct

Short description

CHAPTER 3. HOTINT REFERENCE MANUAL

Continuous product (or division) of one or more inputs. A dedicated exponent for every input
and a offset can be applied.

Equations

y(u)

expi

:ul

us™? L ugtPr 4+ of fset

(3.36)

All exponents are stored in a vector. For a simple multiplication with a input the dedicated
exponent is set to 1, for a division the exponent is set to -1. The offset is a scalar value.

Data objects of IOProduct:

[OProduct

Figure 3.57: IOProduct

] Data name \ type \ R \ default description

element type string "IOProduct" specification of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "IOProduct" name of the element

element number integer R 1 number of the element in the mbs

Graphics

Graphics.show connector | bool 1 Flag to draw connector

Graphics.position vector 0, 0] reference drawing position

Graphics.draw _size vector 20, 20, 0] draw size

Graphics.rotation double 0 rotation: 1==90f, 2—=180F, 3—==270¢, 4—360F

Graphics. vector [-1, -1, -1] background color; -1=transparent

background color

Graphics. vector [0, 0, O] foreground color

foreground _color

Graphics. vector (] number of input of drawing position "in-

input _nodes_num put_nodes"

Graphics.input_nodes matrix (]

I0Block

IOBlock. integer R |0 number of inputs

number of inputs

IOBlock. integer 1 number of outputs

number of outputs

IOBlock. integer 0 number of states

number_of _states

3.4. CONTROL ELEMENTS

281

IOBlock. vector (] vector of element(s) or sensor number(s) con-

input__element numbers nected to input, only valid element numbers per-
mitted!

IOBlock. vector [l vector with types of connected inputs; 1=IOEle-

input__element _types ment, 2=Sensor

IOBlock. vector (] vector with i-th number of output of previous

input local number IOelement connected to this element

IOBlock.exponents vector [0] Exponent of inputs.
y=uléxpl*u2éxp2*... *unéxpn+offset.

IOBlock.offset double 0 Output offset.

Observable special values:

For more information see section [3.1]

value name description
IOBlock.output IOBlock.output[i] ... measures the i-th output of this
IOBlock
IOBlock.input IOBlock.inputl[i] ... access to the i-th input of this
IOBlock, if available
Example

see file Product.txt

Include("addTime.txt")
Include("addRandomSource.txt")

product
{
element_type = "IOProduct™
I0Block
{
exponents = [2,3]
offset = -1

input_element_numbers = [nTime,nRandom]
input_element_types = [1,1]
input_local_number = [1,1]

}

Graphics

{

position = [50,0]

}
}
nProduct = AddElement (product)
nSens = nProduct
nDisp = nProduct

282

Include("addSens.txt")

Include("addDisplay.txt")

3.4.12 IOTime

Short description

CHAPTER 3.

HOTINT REFERENCE MANUAL

Continuous time source. This element simply outputs the time.

Data objects of IOTime:

IOTime

Figure 3.58: IOTime

’ Data name ‘ type ‘ R ‘ default description ‘

element type string "TOTime" specification of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "IOTime" name of the element

element number integer R |1 number of the element in the mbs

Graphics

Graphics.show connector | bool 1 Flag to draw connector

Graphics.position vector 0, 0] reference drawing position

Graphics.draw _size vector 20, 20, 0] draw size

Graphics.rotation double 0 rotation: 1==90%, 2==180F, 3==270¢, 4=360F

Graphics. vector [-1, -1, -1] background color; -1=transparent

background _color

Graphics. vector [0, 0, 0] foreground color

foreground _color

Graphics. vector (] number of input of drawing position "in-

input _nodes num put_nodes"

Graphics.input_nodes matrix []

I0Block

IOBlock. integer 0 number of inputs

number of inputs

IOBlock. integer R |1 number of outputs

number_of outputs

IOBlock. integer R |0 number of states

number of states

3.4. CONTROL ELEMENTS 283

Observable special values:

For more information see section

value name description

IOBlock.output IOBlock.outputl[i] ... measures the i-th output of this
IOBlock

IOBlock.input IOBlock.input[i] ... access to the i-th input of this
IOBIlock, if available

Example

see file addTime.txt

time
{
element_type = "IOTime"
name = "time"
Graphics
{
position = [0, 0] Jreference drawing position
draw_size = [20, 20, 0] Ydraw size
}
}
nTime = AddElement(time)

3.4.13 I0OPulseGenerator
Short description

Continuous pulse generator. This element outputs repeating sequence or rectangular pulses
after a certain delay. It has no input and one output.

Equations
At =t —toffset (3.37)

trest = At mod p (3.38)

(3.39)

a, if At >0 and t,.q < pw
y(t) =
0, else

User defined variables are pulse amplitude a, time offset ¢, s, signal period p and pulse width
pw.

284

|OPulseGenerator

CHAPTER 3. HOTINT REFERENCE MANUAL

FPulse

L]

Figure 3.59: IOPulseGenerator

Data objects of IOPulse(Generator:

| Data name | type | R | default description

element type string "IOPulseGenerator"
specification of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "TOPulseGenerator"
name of the element

element number integer R 1 number of the element in the mbs

Graphics

Graphics.show connector | bool 1 Flag to draw connector

Graphics.position vector 0, 0] reference drawing position

Graphics.draw _size vector 20, 20, 0] draw size

Graphics.rotation double 0 rotation: 1==90t, 2==180F, 3==270t, 4=3601

Graphics. vector [-1, -1, -1] background color; -1=transparent

background _color

Graphics. vector [0, 0, O] foreground color

foreground _color

Graphics. vector [l number of input of drawing position "in-

input _nodes_num put_nodes"

Graphics.input_nodes matrix (]

I0Block

IOBlock. integer 0 number of inputs

number of inputs

IOBlock. integer 1 number of outputs

number of outputs

IOBlock. integer R |0 number of states

number_of _states

IOBlock.amplitude double 1 Amplitude of rectangle pulse generator.

IOBlock.offset double 0 Time offset (s).

IOBlock.period double 1 Period of signal (s).

IOBlock.pulse width double 0.5 Pulse width (s).

IOBlock. integer R |0 1](0) ... (Don’t) use external input as time source.

use external time source

Observable special values:

For more information see section B.1]

3.4. CONTROL ELEMENTS 285
value name description
IOBlock.output IOBlock.outputl[i] ... measures the i-th output of this
IOBlock
IOBlock.input IOBlock.input[i] ... access to the i-th input of this
IOBIlock, if available
Example

see file addPulseGenerator.txt

pulse
{
element_type = "IOPulseGenerator"
I0Block
{
amplitude = 2
offset = 1
period = 0.2
pulse_width = 0.1
}
Graphics
{
position = [0,-50]
}
by
nPulse = AddElement (pulse)

3.4.14 I0TimeWindow
Short description

This element helps to capture a special time window. It has two inputs and one output.

Equations

Description of the different modi

if tstart < UL < teng

else

Ua, lf tstart S Uy

0, else

(3.40)

(3.41)

tend > tstart

Output is determined with inequation (a).

tend S tstart

Output is determined with inequation (b).

286

CHAPTER 3.

TWindow *

IOTimeWindow

HOTINT REFERENCE MANUAL

Figure 3.60: IOTimeWindow

Data objects of IOTimeWindow:

| Data name | type | R | default description |

element type string "TOTimeWindow" specification of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "TOTimeWindow" name of the element

element _number integer R 1 number of the element in the mbs

Graphics

Graphics.show connector | bool 1 Flag to draw connector

Graphics.position vector 0, 0] reference drawing position

Graphics.draw _size vector 20, 20, 0] draw size

Graphics.rotation double 0 rotation: 1==90%, 2==180F, 3==270¢, 4=360F

Graphics. vector [-1, -1, -1] background color; -1=transparent

background _color

Graphics. vector [0, 0, 0] foreground color

foreground _color

Graphics. vector (] number of input of drawing position "in-

input _nodes num put_nodes"

Graphics.input_nodes matrix [l

I0Block

IOBlock. integer 0 number of inputs

number of inputs

IOBlock. integer R |0 number of outputs

number_of outputs

IOBlock. integer R |0 number of states

number_of _states

IOBlock. vector (] vector of element(s) or sensor number(s) con-

input_element numbers nected to input, only valid element numbers per-
mitted!

IOBlock. vector [l vector with types of connected inputs; 1=I0Ele-

input_element types ment, 2=Sensor

IOBlock. vector (] vector with i-th number of output of previous

input local number IOelement connected to this element

IOBlock.t_start double 0 Start time (s).

IOBlock.t _end double 0 End time (s).

3.4. CONTROL ELEMENTS 287

Observable special values:

For more information see section

value name description

IOBlock.output IOBlock.outputl[i] ... measures the i-th output of this
IOBlock, if available

IOBlock.input IOBlock.input[i] ... access to the i-th input of this
IOBIlock, if available

Example

see file TimeWindow.txt

Include("addTime.txt")
Include("addPulseGenerator.txt")

window
{
element_type = "IOTimeWindow"
I0Block
{
t_start = 1
t_end = 2
input_element_numbers = [nTime,nPulse]
input_element_types = [1,1]
input_local_number = [1,1]
}
Graphics
{
position = [50,0]
}
}
nWindow = AddElement (window)

nSens = nWindow
nDisp

nWindow

Include("addSens.txt")
Include("addDisplay.txt")

3.4.15 10StopComputation
Short description

This element stops the computation, if input is unequal zero. It has one input and no out-
put.When the element [OStopComputation stops the computation, the values of the sensors
are written to the sol-file. On the one hand the last integration step is always included, on the
other hand a time step is included which will not fit to the equidistant points of time in the
solution file.

288

CHAPTER 3. HOTINT REFERENCE MANUAL

* Stop

|OStopComputation

Figure 3.61: IOStopComputation

Data objects of IOStopComputation:

| Data name | type | R | default description

element type string "TOStopComputation"
specification of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "TOStopComputation"
name of the element

element number integer R 1 number of the element in the mbs

Graphics

Graphics.show connector | bool 1 Flag to draw connector

Graphics.position vector 0, 0] reference drawing position

Graphics.draw _size vector 20, 20, 0] draw size

Graphics.rotation double 0 rotation: 1==90t, 2==180F, 3==270t, 4=3601

Graphics. vector [-1, -1, -1] background color; -1=transparent

background _color

Graphics. vector [0, 0, O] foreground color

foreground _color

Graphics. vector [l number of input of drawing position "in-

input _nodes_num put_nodes"

Graphics.input_nodes matrix (]

I0Block

IOBlock. integer 0 number of inputs

number of inputs

IOBlock. integer 0 number of outputs

number of outputs

IOBlock. integer R |0 number of states

number_of _states

IOBlock. vector (] vector of element(s) or sensor number(s) con-

input__element numbers nected to input, only valid element numbers per-
mitted!

I0Block. vector (] vector with types of connected inputs; 1=IOEle-

input__element _types ment, 2=Sensor

IOBlock. vector (] vector with i-th number of output of previous

input_local number IOelement connected to this element

closecomputation bool 0 1..close HOTINT, 0..stop computation

errorcode integer -1 error code returned when this element triggers
HOTINT to close

3.4. CONTROL ELEMENTS

Observable special values:

For more information see section

289

value name description
IOBlock.output IOBlock.outputl[i] ... measures the i-th output of this
IOBlock, if available
IOBlock.input IOBlock.input[i] ... access to the i-th input of this
IOBIlock, if available
Example

see file StopComputation.txt

Include("addPulseGenerator.txt")

stop

{

3

element_type = "IOStopComputation"

I0Block

{
input_element_numbers = [nPulsel
input_element_types = [1]
input_local_number = [1]

}

Graphics

{
position = [50,-50]

}

nStop = AddElement (stop)

3.4.16 IOElementDataModifier

Short description

This element can be used to modify data of a constraint or element. It has one input and no
output.

290

CHAPTER 3.

* Modify

|OElementDataModifier

HOTINT REFERENCE MANUAL

Figure 3.62: IOElementDataModifier

Data objects of IOElementDataModifier:

| Data name | type | R | default description

element type string "TOElementDataModifier"
specification of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "TOElementDataModifier"
name of the element

element number integer R 1 number of the element in the mbs

Graphics

Graphics.show connector | bool 1 Flag to draw connector

Graphics.position vector 0, 0] reference drawing position

Graphics.draw _size vector 20, 20, 0] draw size

Graphics.rotation double 0 rotation: 1==90t, 2==180F, 3==270t, 4=3601

Graphics. vector [-1, -1, -1] background color; -1=transparent

background _color

Graphics. vector [0, 0, O] foreground color

foreground _color

Graphics. vector [l number of input of drawing position "in-

input _nodes_num put_nodes"

Graphics.input_nodes matrix (]

I0Block

IOBlock. integer 0 number of inputs

number of inputs

IOBlock. integer 0 number of outputs

number of outputs

IOBlock. integer R |0 number of states

number_of _states

IOBlock. vector (] vector of element(s) or sensor number(s) con-

input__element numbers nected to input, only valid element numbers per-
mitted!

I0Block. vector (] vector with types of connected inputs; 1=IOEle-

input__element _types ment, 2=Sensor

IOBlock. vector (] vector with i-th number of output of previous

input_local number IOelement connected to this element

IOBlock. bool 0 modify element data at start time step only.

start _of timestep only

IOBlock. string m variable name of the modified element data

mod _variable name

IOBlock. integer 1 element number of the modified element or con-

mod _element number straint

3.4. CONTROL ELEMENTS

Observable special values:

For more information see section

291

value name description
IOBlock.output IOBlock.output[i] ... measures the i-th output of this
IOBlock, if available
IOBlock.input IOBlock.inputl[i] ... access to the i-th input of this
IOBlock, if available
Example

see file ElementDataModifier.txt

gravLoad

{
load_type = "Gravity"
direction = 3 % z - direction
gravity_constant = 9.81 % m/s"2

}
nload = AddLoad(gravLoad)

mass3D

{
element_type = "Mass3D"
loads = [nLoad]
Physics.mass= 1

¥
nMass3D = AddElement (mass3D)

I0Time

{
element_type = "IOTime"

}
nI0Time = AddElement(I0Time)

springDamperActuator

Positionl.element_number = nMass3D %number of constrained element

{
element_type = "SpringDamperActuator"
by
nSpringDamperActuator = AddConnector(springDamperActuator)
modifier
{
element_type = "IOElementDataModifier"
I0OBlock
{

input_element_numbers = [nI0Time]

%element connected to input

292 CHAPTER 3. HOTINT REFERENCE MANUAL

input_element_types = [1]
input_local_number = [1]

mod_variable_name = "Connector.SpringDamperActuator.spring_length_offset" Ymodified elemen
mod_element_number = nSpringDamperActuator ¥modified constraint
}
}
AddElement (modifier)

3.4.17 10Display
Short description

This element can be used to display any (single) numberical value fed into the (single) input.

* 1.316

Scope

Figure 3.63: 10Display

Data objects of IODisplay:

’ Data name ‘ type ‘ R ‘ default description ‘

element type string "TODisplay" specification of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "TODisplay" name of the element

element number integer R |1 number of the element in the mbs

Graphics

Graphics.show connector | bool 1 Flag to draw connector

Graphics.position vector 0, 0] reference drawing position

Graphics.draw _size vector 60, 20, 0] draw size

Graphics.rotation double 0 rotation: 1==90%, 2==180F, 3==270¢, 4=360F

Graphics. vector [-1, -1, -1] background color; -1=transparent

background _color

Graphics. vector [0, 0, 0] foreground color

foreground _color

Graphics. vector (] number of input of drawing position "in-

input _nodes num put_nodes"

Graphics.input_nodes matrix []

I0Block

IOBlock. integer R |0 number of inputs

number_of inputs

IOBlock. integer R |0 number of outputs

number_of outputs

3.4. CONTROL ELEMENTS

293

IOBlock. integer R |0 number of states

number_of states

IOBlock. vector (] vector of element(s) or sensor number(s) con-

input__element numbers nected to input, only valid element numbers per-
mitted!

I0Block. vector (] vector with types of connected inputs; 1=IOEle-

input__element _types ment, 2=Sensor

IOBlock. vector (] vector with i-th number of output of previous

input_local number IOelement connected to this element

IOBlock. integer 3 number of digits

number_of _digits

Observable special values:

For more information see section [B.1]

value name

description

Internal.data_variable

data varibales of the element which are no degrees of
freedom (e.g. inelastic strain, contact state, friction
state, etc.). range: 1-1

IOBlock.output IOBlock.output[i] ... measures the i-th output of this
IOBlock, if available
IOBlock.input IOBlock.input[i] ... access to the i-th input of this
IOBlock, if available
Example

see file Display.txt

Include("addTime.txt")

display
{
element_type = "IODisplay"
I0Block
{
input_element_numbers = [nTime]
input_element_types = [1]
input_local_number = [1]
number_of_digits = 3
}
Graphics
{
position = [70,0]
}
}
nDisplay = AddElement (display)

294

3.4.18 10Graph3D

Short description

CHAPTER 3. HOTINT REFERENCE MANUAL

This element can be used to plot 3 input values as a 3d graph directly in the rendered 3D-scene

in the main window.

Data objects of IOGraph3D:

| Data name | type | R | default description |

element type string "TOGraph3D" specification of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "TOGraph3D" name of the element

element number integer 1 number of the element in the mbs

Graphics

Graphics.show connector | bool 1 Flag to draw connector

Graphics.position vector 0, 0] reference drawing position

Graphics.draw _size vector 60, 20, 0] draw size

Graphics.rotation double 0 rotation: 1==90%, 2==180F, 3==270¢, 4=360F

Graphics. vector [-1, -1, -1] background color; -1=transparent

background _color

Graphics. vector [0, 0, 0] foreground color

foreground _color

Graphics. vector (] number of input of drawing position "in-

input _nodes num put_nodes"

Graphics.input_nodes matrix [l

I0Block

IOBlock. integer 0 number of inputs

number of inputs

IOBlock. integer 0 number of outputs

number_of outputs

IOBlock. integer 0 number of states

number_of _states

IOBlock. vector (] vector of element(s) or sensor number(s) con-

input_element numbers nected to input, only valid element numbers per-
mitted!

TIOBlock. vector (] vector with types of connected inputs; 1=I0Ele-

input _element types ment, 2=Sensor

IOBlock. vector (] vector with i-th number of output of previous

input local number IOelement connected to this element

IOBlock.num- integer 100 if positive, only values of the last num-

ber _of plotted steps ber of plotted steps are plotted in graph

IOBlock.sample _time double 0 must be positive, every sampling time seconds
the graph is updated

IOBlock.origin vector 0,0,0 Global position of the graph’s origin

IOBlock.magnification vector 1,1,1 Magnification of the graph in each global di-
rection

Observable special values:

For more information see section B.1]

] value name

\ description

3.4. CONTROL ELEMENTS 295

Internal.data_variable data varibales of the element which are no degrees of
freedom (e.g. inelastic strain, contact state, friction
state, etc.). range: 1-601

IOBIlock.output IOBlock.output[i] ... measures the i-th output of this
IOBlock, if available
IOBlock.input IOBlock.inputl[i] ... access to the i-th input of this

IOBlock, if available

Example

see file Graph3D.txt

3.4.19 10MinMax
Short description

This block returns the minimum, maximum or average value of the input. Up to a specific
point of time, this functionality is switched off and the output y is equal to the input u. This
block can be used to postprocess sensor values.

Description of the different modi

1 = minimum y=u fort <ty
y = ming>, (u) for t > ¢
with ¢y = IOBlock.start time
2 = maximum y=ufort <ty
y = max;>y, (u) for t > ¢
3 = average y=u for t <t
Yy = % Zt,;>t0 u; for t; > tg
4 — minimum (abs) y =wu for t <t
y = ming>y, (Ju]) for t > ¢y
5 = maximum (abs) y =wu for t <t
y = ming>y, (Ju]) for ¢ > ¢
6 = average(abs) y =u for t <t
Y= Dy s, Uil for ti > to

? MinMax ¢

IOMinMax

Figure 3.64: IOMinMax

296

Data objects of IOMinMax:

CHAPTER 3. HOTINT REFERENCE MANUAL

’ Data name ‘ type ‘ R ‘ default description

element type string "TOMinMax" specification of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "ITOMinMax" name of the element

element number integer R |1 number of the element in the mbs

Graphics

Graphics.show connector | bool 1 Flag to draw connector

Graphics.position vector 0, 0] reference drawing position

Graphics.draw _size vector 20, 20, 0] draw size

Graphics.rotation double 0 rotation: 1==901, 2==180fF, 3==2701, 4=3601

Graphics. vector [-1, -1, -1] background color; -1=transparent

background _color

Graphics. vector [0, 0, 0] foreground color

foreground color

Graphics. vector [] number of input of drawing position "in-

input _nodes_num put_nodes"

Graphics.input _nodes matrix Il

I0Block

IOBlock. integer 0 number of inputs

number_of _inputs

IOBlock. integer 1 number of outputs

number of outputs

IOBlock. integer R |0 number of states

number of states

IOBlock. vector (] vector of element(s) or sensor number(s) con-

input__element numbers nected to input, only valid element numbers per-
mitted!

IOBlock. vector [] vector with types of connected inputs; 1=IOEle-

input__element types ment, 2=Sensor

IOBlock. vector (] vector with i-th number of output of previous

input_local number IOelement connected to this element

IOBlock.mode integer 1 1..min, 2..max, 3..avg, 4..min(abs), 5..max(abs),
6..avg(abs)

IOBlock.start _time double 0 Up to this point of time, the output is equal to
the input. Afterwards the output is computed
according to the mode.

Observable special values:
For more information see section 3.1]
value name description

Internal.data_variable

data varibales of the element which are no degrees of
freedom (e.g. inelastic strain, contact state, friction
state, etc.). range: 1-2

IOBlock.output IOBlock.output[i] ... measures the i-th output of this
IOBlock
IOBlock.input IOBlock.input[i] ... access to the i-th input of this

IOBlock, if available

3.4. CONTROL ELEMENTS 297

Example

see file IOMinMax.txt

Time.element_type= "I0Time"
nEleml = AddElement (Time)

MinMax
{
element_type= "IOMinMax"
Graphics.position= [50, 0]
I0Block
{
input_element_numbers= [nElemi]
input_element_types= [1]
input_local_number= [1]
mode = 1 % minimum
start_time = 0.5

}
}
nElem2 = AddElement (MinMax)
SensorQutput
{

sensor_type= "ElementSensor"
element_number= nEleml
value= "IOBlock.output[1]"

}
AddSensor (SensorOutput)

SensorQutput.element_number= nElem2
AddSensor (SensorQutput)

3.4.20 IOTCPIPBIlock

Short description

This I/O element is a communication block based on TCP/IP which allows HOTINT to connect
to other programs or tools, opening up a wide range of possible applications including external
control, user-defined “add-ons”, or even co-simulation. Based on the specified IP (v4) address
and port number the IOTCPIPBlock sets up a server socket and waits for a connection request
from a client. Hence, HOTINT here plays the server role, and the external program is the client
application.

Limitations

For the use of this element some kind of active network adapter is required. If you only want
to communicate locally on your computer and do not have an active network adapter, you can
alternatively use a so-called “loopback device” which emulates an active real network adapter in
a real network. To this end, either use the localhost address 127.0.0.1 (this is the default) — or
one address from the 127.0.0.0/8 subnet (127.0.0.1-127.255.255.254) — or create and configure
an actual virtual network adapter. The following steps summarize how such a loopback adapter

298 CHAPTER 3. HOTINT REFERENCE MANUAL

can be installed on Microsoft Windows:

(1) Open the device manager

(2) Select the network category and choose “Action — Add legacy hardware” via the menu
(3) Choose the option for manual installation and select the category “network adapters” from
the list

(4) In the next dialog select “Microsoft” as vendor and “Microsoft loopback adapter” as har-
dware component

(5) Proceed and finish the installation

Example: Communication with Simulink/Matlab

This example demonstrates how to realize a connection between HOTINT and Matlab/Simu-
link. The purpose of the TCP/IP block is to use other powerful tools for some computations.
For example it is possible to do the control law calculations for the actuation of the multibody
system in Simulink (as alternative to the IOBlocks in HOTINT). It’s also very simple to do a pa-
rameter variation, see the advanced example in the folder “examples/balancing cart TCPIP”.
In “examples/ TCPIP” a very simple communication example is included: From the HOTINT
side four different double values (simulation time t multiplied by the gain factors one to four)
are transmitted to Simulink, see figure Simulink summates the first and second respecti-
vely the third and fourth value and sends the two double values back to HOTINT. The values
are captured by sensors, stored in the solution file and can be visualized in the plot tool.
Comment: For testing purposes you can also use the executable “TCPIP _client.exe” which has
the same functionality as the Simulink example. To use this client executable create a “IP.txt”
file in the same folder. The first four lines represent the IP address of the HOTINT computer,
the fifth line is the port number.

To start this example, following things have to be done:

(1) Start Matlab/Simulink and open the file communication.mdl in the folder “examples/T-
CPIP”, see figure [3.67

Comment: If the “Instrument Control Toolbox” is not installed the TCP/IP communication
blocks appear red and indicate an unresolved reference to a library block (bad link). The figure
shows the basic structure that should not be changed. The output of the “TCP/IP Receive”
block is a vector yYpe. = [t, X1, ..., Ty, f}T with HOTINT time ¢, data variables z; to x,, and the
handling flag f. The “Selector” block outputs the last element of the vector (flag f) for the flag
handling. You have to adapt the these two blocks if you want to change the number of received
variables. There is no need to change the “flag handling in” block.

(2) Make sure that the “Current Folder” is the folder which include the communication.mdl file.
(3) Double click the “TCP/IP Receive” block and select the “Remote address” (i.e., the IP
address) of the computer HOTINT is running on and select a “Port”. Repeat this point for the
“TCP/IP Send” block.

Comment: If HOTINT and Simulink is running on the same computer you can also choose
localhost (“127.0.0.17).

(4) Set the “Sample Time” of every block (TCP/IP Receive, Constants,...) and choose fixed
step size in the “Solver Options”.

(5) Open the subsystem “computations”, see figure . This subsystem contains all computa-
tions y = f (u) with input u and output y.

Comment: Change this subsystem to your needs.

(6) Open the subsystem “flag handling out”, see figure In default no handling flags are
transmitted to HOTINT.

3.4. CONTROL ELEMENTS 299

Comment: Change this subsystem to your needs.

(7) Save the mdl file. (8) Open the TCPIP.hid HOTINT file and type in the same “ip_address”
and “port_number” as for the Matlab/Simulink side.

(9) Make sure that “max_step size” and “min_step size” in the subtree “SolverOptions. Timeint”
are set to the same value as the fixed “Sample Time” in Simulink.

Comment: This is very important especially for the case of time dependent blocks like integra-
tors in Simulink.

(10) Save the file.

(11) Load the communication.hid file in HOTINT.

(12) Click the “Start simulation” button in Simulink.

(13) Click the “Start!” button in HOTINT.

Comment: The points 11-13 have to be executed within the timeout limits. You can change the
latter in the TCP/IP blocks for both HOTINT and Simulink. During these steps connection
errors might occur due to firewall restrictions; you will probably have to set the corresponding
permissions in your firewall(s).

It is also recommended to choose the Simulink “Simulation stop time” higher as the “end time”
in HOTINT. The reason is that HOTINT sends a stop flag after the last simulation step and
in Simulink this flag is used to execute a “Stop” block which ends the communication and
simulation.

Additional notes

Data exchange is performed at a stage before every time step in HOTINT, following below
protocol:

The outgoing data, i.e. the data sent from HOTINT to the client, is an array of 8-byte double
precision numbers which contains, in that order, the current simulation time (1 double), the
current values of the inputs of the I/O element, and one additional element corresponding to
a communication control flag (see the Communication flags - section below for more details).
Hence, the total amount of outgoing data is (number of inputs + 2) times 8 bytes (double pre-
cision numbers). After the client has received and processed that data, it sends back a data
package to HOTINT - the incoming data for the I/O element — which again consists of an
array of double precision numbers, this time with the length (number of outputs +1). The first
(number of output) double precision values determine the outputs of the I/0 element, and the
last element again is used for the transfer of communication flags.

HOTINT now begins the computation of one time step, where the transmitted data from the
client is accessible via the outputs of the IOTCPIPBlock.

Important notes

— The waiting procedure for the client connection request, as well as the send and receive opera-
tions all are so-called “blocking calls”. This means that HOTINT will wait for those operations
to finish, and during that time, not respond to any user input. Therefore, a reasonable timeout
(default is 30 seconds) should be specified for the IOTCPIPBlock to allow TCP/IP connection
or transmission error handling.

— You will probably have to adjust your firewall settings and set appropriate permissions for
HOTINT and the client application.

— Depending on the implementation of the client, it might be neccessary to start the server,

300 CHAPTER 3. HOTINT REFERENCE MANUAL

i.e., HOTINT, first.

— Since HOTINT is running on Microsoft Windows, the memory byte order, also called “endi-
anness”, is “Little Endian”, which means that the least significant bytes/digits are stored “first”
in memory, i.e., on the smallest memory address. Therefore, any data sent from or received by
the IOTCPIPBIlock has or must have that byte order, respectively. You probably have to take
that into account on the client side, especially if the client is running on a different platform
and /or architecture on another computer.

Communication flags
Currently, the following 4-byte flags are implemented:

(1) Neutral flag: 0x00000000 (integer value: 0). This flag signals that the application is run-
ning (properly) and no further action is required.

(2) Reset flag: 0x00000001 (integer value: 1). This flag is sent from HOTINT to the client in
the first step of the computation. This can be used, for instance, to reset the client application.
(3) Error flag: 0x00000002 (integer value: 2). Indicates that an error has occurred. If HOTINT
receives the error flag, an error message is issued, the connection is closed and the program
execution terminated.

(4) Close flag: 0x00000003 (integer value: 3). This flag is sent from HOTINT to the client to
indicate that the computation has finished and the connection will be closed, which is the case
when the computation has actually finished, or the “Stop”-button has been hit.

(5) Any other value: Treated as error flag (3).

One of these flags is stored in and read from the last 8 bytes of the exchanged data — corre-
sponding to one additional double precision number — in either direction in every time step.
Currently, for simplicity, the flag is just casted explicitly from an integer to a double precision
number which then can be transmitted and casted back to an integer exactly. Of course, this
procedure must be followed on both the server and the client side.

HOTINT

1

1

: MATLAB / Simulink

1 v
g CONLTO

; 1

1

1

1

1

I

]

I

1

/0 elements

Solver

LIGGGHTS / SPH

fluid-structure interactio
hardware-in-the-loop

external tools

TCP/IP

1

Figure 3.65: general concept of TCP/IP coupling

3.4. CONTROL ELEMENTS

y=Ax+h

I0Time I0LinearTransformation

y=Ax+b

I0LinearTransformation

y=Ax+b

B LinearTransformatic

y=Ax+b

I0LinearTransformation

301

TCPRIP

IOTCPIPBlock

Figure 3.66: TCP/IP Block with 4 inputs and 2 outputs

§_| communication E@
File Edit View Simulation Format Tools Help
OedSES @B =2 » an Normal 2 &
From1
o n o
127.0.01 M 4 127.0.0.1
Port 50000 D212 > cut g R SR

TCF/IF Receivet

Selector fleg handling in

Ready 100%

computations

TCP/IP Send

ode3

Figure 3.67: TCP/IP communication with Matlab/Simulink (do not change this structure)

302

CHAPTER 3. HOTINT REFERENCE MANUAL

B communication/computations EI@

File Edit View Simulation Format Tools Help

O EEE&E i | <2 [4 'rrf Nomal

Enable

HOTINT time
-

Terminator

In1

flag handling cut

=
HOTINT_flag 1=
Terminatort

Ready 100% ode3

Figure 3.68: Subsystem computations

L] communication/flag handling in EI@

File Edit View Simulation Format Tools Help

O =Ed& T | 2 » bnf |N0rrna| j

¥

Data Type Conversion

Terminator1

Constant! oo el flag

]

Constant2

reset flag
Compare Gotol
To Zero
>
. " B
2
Terminator
Constant3 emor flag
>
=)
Constant4 dlose flag Stop Simulation
Ready 100% ode3

Figure 3.69: TCP/IP subsystem “flag handling in”

3.4. CONTROL ELEMENTS

303

o

File Edit Wiew 5Sim

b &

W communication/computations/flag ha... | = || = |[=£5%|

ulation

Format Tools

Help
P | <2 b

reset flag

z

emror flag

T

Zain

>—>+
_b.+
+

Ot

>_

Zain

close flag

F|100%

Eain2

>_

ode3d

Figure 3.70: TCP/IP subsystem “flag handling out”

Data objects of IOTCPIPBlock:

’ Data name ‘ type ‘ R ‘ default description ‘

element_type string "TOTCPIPBlock" specification of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "IOTCPIPBlock" name of the element

element number integer R |1 number of the element in the mbs

Graphics

Graphics.show connector | bool 1 Flag to draw connector

Graphics.position vector 0, 0] reference drawing position

Graphics.draw _size vector 20, 20, 0] draw size

Graphics.rotation double 0 rotation: 1==90t, 2==180F, 3==2701, 4=3601

Graphics. vector [-1, -1, -1] background color; -1=transparent

background _color

Graphics. vector [0, 0, O] foreground color

foreground color

Graphics. vector [l number of input of drawing position "in-

input _nodes_num put_nodes"

Graphics.input_nodes matrix (]

I0Block

IOBlock. integer 0 number of inputs

number_of _inputs

IOBlock. integer 0 number of outputs

number of outputs

IOBlock. integer R |0 number of states

number_of states

IOBlock. vector Il vector of element(s) or sensor number(s) con-

input__element numbers nected to input, only valid element numbers per-
mitted!

I0Block. vector (] vector with types of connected inputs; 1=IOEle-

input__element _types ment, 2=Sensor

304 CHAPTER 3. HOTINT REFERENCE MANUAL
IOBlock. vector (] vector with i-th number of output of previous
input local number IOelement connected to this element
IOBlock.port number integer 50000 Port number, e.g. ’50000’.

IOBlock.ip address string "127.0.0.1" IP address, e.g. ’127.0.0.1° (localhost). Do not
neglect the dots between the numbers.

IOBlock. integer 0 Number of received data values (outputs). This

received data_size number has to be consistent with the transmitted
data values of the other communication side (the
additional double for the communication flags is
not corresponding to this number).

IOBlock.sample _time double -1 Time span after which data is communicated. If
value is -1 (default) then communication is per-
formed at each time step.

IOBlock.timeout integer 30000 TCP/IP timeout in milliseconds; default is 30000.

IOBlock.disable receive integer 0 incoming data communication is neglected.

IOBlock.disable send integer 0 outgoing data communication is neglected.

Observable special values:

For more information see section B.1]

value name description
IOBlock.output IOBlock.output[i] ... measures the i-th output of this
IOBlock, if available
IOBlock.input IOBlock.input[i] ... access to the i-th input of this
IOBlock, if available
Example

see file TCPIP.txt

time.element_type= "I0Time"
nTime = AddElement(time)

gain

{

element_type= "IOLinearTransformation"

Graphics.position= [50, 0]

I0Block
{

input_element_numbers= [nTime]

input_element_types= [1]
input_local_number= [1]

Al

b_vector= [0] Joffset vector b: y=A.utb

}
}

nGainl = AddElement(gain)

gain.I0Block.A_matrix= [2]

hspecification of element type.

%specification of element type.

of element(s) or sensor number(s)

%v. with types of connected inputs; 1=I0Element

%v. with i-th number of output of previous IOelement
A_matrix= [1] ‘transformation matrix A: y=A.u+b

3.4. CONTROL ELEMENTS

gain.Graphics.position= [50, -30]
nGain2 = AddElement(gain)
gain.I0Block.A_matrix= [3]
gain.Graphics.position= [50, -60]
nGain3 = AddElement(gain)
gain.I0Block.A_matrix= [4]
gain.Graphics.position= [50, -90]
nGain4d = AddElement(gain)

TCPIP
{

element_type= "IOTCPIPBlock" Yspecification of element type.

Graphics.position= [100, 0]
I0Block
{

input_element_numbers= [nGainl,nGain2,nGain3,nGain4]
input_element_types= [1,1,1,1]

input_local_number= [1,1,1,1]

by
3
nTCPIP = AddElement (TCPIP)

sensor.sensor_type= "ElementSensor"

sensor.element_number= nTCPIP
sensor.value= "IOBlock.output[1]"
nSensorl= AddSensor(sensor)

sensor.name= '"sens2"
sensor.value= "I0Block.output[2]"
nSensor2= AddSensor(sensor)

SolverOptions.Timeint.max_step_size
SolverOptions.Timeint.min_step_size

SolverOptions.start_time = 0
SolverOptions.end_time = 10

3.4.21 I0X2C
Short description

%v. of sensor number(s)
%v. w. types of connected inputs; 1=I0Element
»v. w. i-th number of output

port_number= 50000 JPort number, e.g. ’50000°’.

ip_address= "127.0.0.1" JIP address, e.g. ’127.0.0.1°.

received_data_size = 2 YNumber of received values (outputs).

timeout= 10000 %TCP/IP timeout in milliseconds; default is 10000.

305

This I/O element is a communication block based on IOTCPIPBlock which allows HOTINT
to connect to X2C. For the mapping of the inputs and outputs in HOTINT and X2C strings

are used.

Additional notes

HOTINT is the server and X2C Application the client. HOTINT needs synchronisation time

(sample time * 1.5) as double value.
Initialization

306 CHAPTER 3. HOTINT REFERENCE MANUAL

e X2C builds connection

e X2C sends synchronisation time

e HOTINT sends mapping of inports and outports (see Port Identifier Order)
Initialization of inports and outports

e HOTINT sends (init-) inport values to X2C (see Port Value Exchange)
e X2C Update

Continuous communication

e X2C sends outport values to HOTINT (see Port Value Exchange)

e HOTINT Update

e HOTINT sends inport values to X2C (see Port Value Exchange)

e X2C Update

Closing of Communication

e usually done by server (HOTINT) by setting status flag

e in error case also possible for client by setting status flag

Hatint transmit the amount of ports and port name order being transmitted in continous procedure

Inpaort list length Length of Inpart Inport Label 1 Length af Inpart Inport Labal n
(uint3z) Label 1 [uint32) [char]])) Label n (uint32} [char(])
| Cutport listlangth | Length of Outport | Oulport Label 1] [Length of Dutpart | Outport Label n
{uint32) Label 1 (uint32) (ehar]) Labal rn (uint32} (ehar])

Figure 3.71: IOX2C Port Identifier Order

Transmission of inport values from Hotint 1o X2C.

Status flag (uint32) Value Inpart 1 (double) |Value inport 2 {double) |..... [Value Inpart n {double)
Transmission of oulport values fram X2C ta Hotlnt,
Status Flag (uint32) [WValue Dutpart 1 [Value Qutport 2 [[Walue Dutpart n

| [double) | (double) | (double)

Figure 3.72: IOX2C Port Value Exchange

Value Name Description

0x00000000 neutral no errors, continue with
procedure

0x00000001 resel reset procedure and
communication

0x00000002 arrar errar ocurred, error handling
by application

0x00000003 close stop procedure and close
communication

Figure 3.73: TOX2C Status Flag Values

Data objects of IOX2C:

3.4. CONTROL ELEMENTS

307

| Data name | type | R | default description

element type string "TOX2C" specification of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "TOX2C" name of the element

element number integer R 1 number of the element in the mbs

Graphics

Graphics.show connector | bool 1 Flag to draw connector

Graphics.position vector 0, 0] reference drawing position

Graphics.draw _size vector 20, 20, 0] draw size

Graphics.rotation double 0 rotation: 1==90f, 2==180F, 3==270¢, 4=360F

Graphics. vector [-1, -1, -1] background color; -1=transparent

background color

Graphics. vector [0, 0, O] foreground color

foreground _color

Graphics. vector (] number of input of drawing position "in-

input _nodes num put_nodes"

Graphics.input_nodes matrix (]

I0Block

IOBlock. integer R |0 number of inputs

number of inputs

IOBlock. integer 0 number of outputs

number_of outputs

IOBlock. integer 0 number of states

number_of _states

IOBlock. vector (] vector of element(s) or sensor number(s) con-

input_element numbers nected to input, only valid element numbers per-
mitted!

I0Block. vector (] vector with types of connected inputs; 1=IOEle-

input _element types ment, 2=Sensor

IOBlock. vector (] vector with i-th number of output of previous

input local number IOelement connected to this element

IOBlock.port number integer 50000 Port number, e.g. ’50000’.

IOBlock.ip _address string "127.0.0.1" IP address, e.g. ’127.0.0.1° (localhost). Do not
neglect the dots between the numbers.

IOBlock.sample _time double -1 Time span after which data is communicated. If
value is -1 (default) then communication is per-
formed at each time step.

IOBlock.timeout integer 30000 TCP/IP timeout in milliseconds; default is 30000.

IOBlock.disable receive integer 0 incoming data communication is neglected.

IOBlock.disable send integer 0 outgoing data communication is neglected.

IOBlock.input _names string m Names of the inputs, separated with commas.
Names have to be consistent with settings in X2C.
Order of names has to match vectors specifying
input element types. e.g. voltage,current

IOBlock.output _names string m Names of the outputs, separated with commas.
Names have to be consistent with settings in X2C.
e.g. position,velocity

Observable special values:

For more information see section [3.1]

’ value name

‘ description

308 CHAPTER 3. HOTINT REFERENCE MANUAL

IOBlock.output IOBlock.output[i] ... measures the i-th output of this
IOBlock, if available

IOBlock.input IOBlock.input[i] ... access to the i-th input of this
IOBlock, if available

3.4.22 1OLinearTransducer
Short description

The LinearTransducer realizes an electro-magnetic linear transducer.

Degrees of freedom

The element has 1 degree of freedom, the magnetic flux

Equations

The LinearTransducer computes the force which has to be applied to the mechanical bodies,
e.g. Rigid3D. The magnetic flux ¥ is computed as

aw
U Ri(z,V) (3.42)

with displacement z, current 7, voltage u and resistance R. The force f of the transducer is a
function of displacement and current, f (z,7), whereas the current is a function of displacement
and magnetic flux i(z, V). To compute these values the LinearTransducer uses radial basis
functions (RBF) of the form

XSC

N

v = wo(lxe -l +v |,] (3.43

i=1
with N supporting points (centers) ¢ and the weights w and v. The argument x = [z, ¥] for
the current and x = [z, 7] for the force.The argument x is scaled with the scaling vector s,
Tse; = Tif Si (3.44)

Different kernels of the RBI" are available:
e RBF kernel = 1: ¢ (||xse — Cil|) = ¢ (r) =1?
e RBF kernel = 2: ¢ (||xs — ¢i||) = ¢ (r) = r?In(r)

In the linear case you can use the following simplification for the force

v = [Fy, Cp, ki (3.45)
w =[] (3.46)
c =] (3.47)

s =[1;1] (3.48)

3.4. CONTROL ELEMENTS

309

Note: C, is the destabilizing (negative) magnetic stiffness.The linear case is therefore equal to

f(z,1) = Fo + Cpz + kit (3.49)
and for the current v, ko1
v =] =~ L] (3.50)
w =] (3.51)
c=] (3.52)
s =[1;1] (3.53)
which is equal to
i(z,¥) = —% — %z %\If (3.54)
Inputs and Outputs
e input 1: voltage u in V
e input 2: displacement z in m
e output 1: force f in N
e output 2: negative force —f in N
e output 3: current ¢ in A
| L1: Load
y=Ax+b
S1:displacement Sensor | lin Trans
voltage t

[OLinearTransducer

Figure 3.74: IOLinearTransducer

Data objects of IOLinearTransducer:

| Data name | type | R | default description

element type string "IOLinearTransducer"
specification of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "IOLinearTransducer"
name of the element

element number integer R |1 number of the element in the mbs

Graphics

Graphics.show connector | bool 1 Flag to draw connector

Graphics.position vector 0, 0] reference drawing position

Graphics.draw _size vector 20, 20, 0] draw size

Graphics.rotation double 0 rotation: 1==901, 2==180F, 3==270t, 4=3601

310 CHAPTER 3. HOTINT REFERENCE MANUAL

Graphics. vector [-1, -1, -1] background color; -1=transparent

background color

Graphics. vector [0, 0, 0] foreground color

foreground _color

Graphics. vector (] number of input of drawing position "in-

input _nodes num put_nodes"

Graphics.input_nodes matrix [l

I0Block

IOBlock. integer 2 number of inputs

number of inputs

IOBlock. integer 3 number of outputs

number_of outputs

IOBlock. integer 1 number of states

number_of _states

IOBlock. vector (2, 3] numbers of IOElement or sensor providing the in-

input_ element numbers puts [voltage, displacement]

IOBlock. vector [1, 1] types of connected inputs; 1=IOElement, 2=Sen-

input__element types sor

I0Block. vector [1, 1] i-th number of output of previous IOelement con-

input_local number nected to this element

Physics

‘ Physics.resistance ‘ double 0.6 electrical resistance in Ohm

Physics.RBF Force

Physics. RBF _ Force. vector [1, 1] scaling of displacement, x(1), and current, x(2):

scaling vector x_scaled(i) = x(i)/scaling vector(i)

Physics. RBF _Force. matrix (] c(i) is the scaled supporting point

centers

Physics. RBF _ Force. vector (] w(i) is the weight of the supporting point c(i)

weights RBF

Physics.RBF _Force. vector [0, 1.4e4-004, 14]

weights poly v(i), weights of the polynomial v*[1; x(1); x(2)],
in linear case: v = [F0, Cm, ki]

Physics. RBF _ Force. integer 1 kernel of the RBF: 1..r*r*r, 2..r*r*In(r)

RBF _kernel

Physics.RBF Current

Physics.RBF _Current. vector [1, 1] scaling of displacement, x(1), and current, x(2):

scaling vector x_scaled(i) = x(i)/scaling_vector(i)

Physics. RBF_ Current. matrix (] c(i) is the scaled supporting point

centers

Physics. RBF _Current. vector (] w(i) is the weight of the supporting point c(i)

weights RBF

Physics. RBF _Current. vector [0, -1e+4-003,

weights _poly 71.4] v(i), weights of the polynomial v*[1; x(1); x(2)],
in linear case: v = [-Psi0/L, -ki/L, 1/L]

Physics. RBF _Current. integer 1 kernel of the RBF: 1..r*r*r, 2..r*r*In(r)

RBF kernel

Observable special values:

For more information see section B.1]

value name

description

Internal. DOF

degrees of freedom (or generalized unknowns) of the
element. range: 1-1

Internal.first _order variable

first order variables of the element. range: 1-1

3.4. CONTROL ELEMENTS 311

IOBlock.output IOBlock.output[i] ... measures the i-th output of this
IOBlock
IOBlock.input IOBlock.input[i] ... access to the i-th input of this
IOBlock
Example

see file IOLinearTransducer.txt

volt.element_type= "IOLinearTransformation"
volt.I0OBlock.A_matrix= []

volt.I0Block.b_vector= [10] % constant voltage of 10 V
nEVolt = AddElement(volt)

rigidbody.element_type= "Mass1D"
rigidbody.Physics.mass= 0.315 % add 1 body
nEBody = AddElement (rigidbody)

elemSet.set_type = "ElementSet"
elemSet.element_numbers= [nEBody] 7 set with 1 body
nESetTilgerMoving = AddSet(elemSet)

spring.element_type= "CoordinateConstraint" % spring w.r.t. ground
spring.Physics.use_penalty_formulation= 1 % spring has to be sufficient stiff!
spring.Physics.Penalty.damping= 15 % damping coefficient Dp for viscous damping

spring.Physics.Penalty.spring_stiffness= 20000 7% general or penalty stiffness parameter Sp
spring.Coordinatel.element_number= nEBody

spring.Coordinatel.local_coordinate= 1

AddConnector(spring)

sens.sensor_type= "FVElementSensor"

sens.element_number= nEBody

sens.field_variable= "displacement" % displacement is needed as input
nSensDisp = AddSensor(sens)

elektroMagnet
{
element_type= "IOLinearTransducer"
Graphics.position= [100, 0]
I0Block.input_element_numbers= [nEVolt,nSensDisp] % inputs [voltage, displacement]

I0Block.input_element_types= [1, 2] % types; 1=I0Element, 2=Sensor
}
nELinTransducer = AddElement (elektroMagnet)
force
{

load_type= "GCLoad"

load_function_type= 2 %time dependency of the load: 2..I0Element
I0Element.input_element_number= nELinTransducer Ynumber of IOElement in the mbs
I0Element.input_local_number= 1 Ynumber of output of IOElement connected to this element

312 CHAPTER 3. HOTINT REFERENCE MANUAL

}
nLTilger = AddLoad(force) % add load to mbs
AssignLoad(nESetTilgerMoving,nLTilger) % assign load to element

sensEl

{
name= "I0 voltage"
sensor_type= "ElementSensor"
element_number= nELinTransducer
value= "IOBlock.input[1]"

}

AddSensor (sensEl)

sensEl .name= "I0 displacement"
sensEl.value= "IOBlock.input[2]"
AddSensor (sensEl)

sensEl.name= "IO force"
sensEl.value= "I0OBlock.output[1]"
AddSensor (sensEl)

sensEl.name= "IO current"
sensEl.value= "IOBlock.output[3]"
AddSensor (sensEl)

whereas for dynamic problems also Solid.density is required.

3.5. MATERIAL

3.5 Material

These materials are available:

e Material,

e Material ThermalExpansion, |3.5.2

e MaterialElastoplastic, |3.5.3

e MaterialElastoplasticThermalExpansion, |3.5.4

Note:

313

In HOTINT several classes are treated as ‘'material’. BeamProperties are also 'materials’, and
can therefore be edited and deleted in the GUI with the menu items of the materials.
In the script language the command AddMaterial is just available for the materials in the list

above.

3.5.1 Material
Short description

Material is the basic Object for defining material properties for standard finite elements (in
contrast to structural finite elements such as beams and plates).

Additional notes

For static problems define the elastic properties Solid.youngs modulus and Solid.poisson_ratio,

If the problem is planar

(Solid.plane is set to 1), then the plane strain case is assumed unless Solid.plane stress is
set to 1. If the material is inelastic, then also the properties in the subtree Inelasticity have
to be set.

Data objects of Material:

’ Data name ‘ type ‘ R ‘ default description
Material number integer R |4
material _type string "Material" type of the material
name string "Material" name of the material
Graphics
‘ Graphics.color ‘ vector ‘ ‘ [0, 0, 1] material color (as yet used with FEMesh, only) ‘
Solid
Solid.plane bool 0 true: 2D, false: 3D
Solid.plane _stress bool 0 for 2D-Elements only; 1: plane stress, 0: plane
strain
Solid.density double 0 material density, must not be set for static pro-
blems
Solid.youngs modulus double 0 Youngs modulus
Solid.poisson _ratio double 0 Poisson ratio
Solid. bool 0 check to enable orthotropic parameters
is_orthotropic material
Solid.Orthotropic
Solid.Orthotropic.E1 double 0 elasticity along axis 1
Solid.Orthotropic.E2 double 0 elasticity along axis 2
Solid.Orthotropic.E3 double 0 elasticity along axis 3

314

CHAPTER 3. HOTINT REFERENCE MANUAL

Solid.Orthotropic.NU12 double 0 poisson ration 12

Solid.Orthotropic.NU13 double 0 poisson ration 13

Solid.Orthotropic.NU23 double 0 poisson ration 23

Solid.Orthotropic.G12 double 0 shear modulus 12

Solid.Orthotropic.G13 double 0 shear modulus 13

Solid.Orthotropic.G23 double 0 shear modulus 23

Damping

Damping.c M double 0 used for Rayleigh damping (C = ¢ M * M +
c K*K)

Damping.c_ K double 0 used for Rayleigh damping (C =c¢c M * M +
c K*K)

Inelasticity

Inelasticity.inelasti- string "fixed point" fixed point, return mapping (see Simo and

city _solution method Hughes, Computational Inelasticity 1998)

Inelasticity. integer R |0 number of inelastic variables used by material

nr_inelastic variables class

Example

see file Material.txt

my_material

{
material_type= "Material"
Solid.density = 7800
Solid.youngs_modulus = 2el0
by

nMaterial = AddMaterial (my_material)

3.5.2 MaterialThermalExpansion
Short description

Material which considers thermal expansion.

Data objects of MaterialThermalExpansion:

| Data name | type | R | default description
Material number integer R |4
material _type string "Material ThermalExpansion"
type of the material
name string "Material ThermalExpansion"
name of the material
Graphics
| Graphics.color | vector ‘ | [0, 0, 1] material color (as yet used with FEMesh, only) |
Solid
Solid.plane bool 0 true: 2D, false: 3D
Solid.plane _stress bool 0 for 2D-Elements only; 1: plane stress, 0: plane
strain
Solid.density double 0 material density, must not be set for static pro-
blems
Solid.youngs modulus double 0 Youngs modulus
Solid.poisson _ratio double 0 Poisson ratio
Solid. bool 0 check to enable orthotropic parameters
is_orthotropic material

3.5. MATERIAL 315
Solid.Orthotropic
Solid.Orthotropic.E1 double 0 elasticity along axis 1
Solid.Orthotropic.E2 double 0 elasticity along axis 2
Solid.Orthotropic.E3 double 0 elasticity along axis 3
Solid.Orthotropic.NU12 double 0 poisson ration 12
Solid.Orthotropic.NU13 double 0 poisson ration 13
Solid.Orthotropic.NU23 double 0 poisson ration 23
Solid.Orthotropic.G12 double 0 shear modulus 12
Solid.Orthotropic.G13 double 0 shear modulus 13
Solid.Orthotropic.G23 double 0 shear modulus 23
Damping
Damping.c M double 0 used for Rayleigh damping (C — ¢ M * M +

c K*K)
Damping.c_ K double 0 used for Rayleigh damping (C = ¢ M * M +
c K*K)

Inelasticity
Inelasticity.inelasti- string "fixed point" fixed point, return mapping (see Simo and
city _solution method Hughes, Computational Inelasticity 1998)
Inelasticity. integer R |0 number of inelastic variables used by material
nr_inelastic variables class
ThermalExpansion
ThermalExpansion. double 0 temperature difference to reference material
delta T
ThermalExpansion. double 0 thermal expansion coefficient
coefficient

Example

see file Material ThermalExpansion.txt

3.5.3 MaterialElastoplastic

Short description

MaterialElastoplastic is a material which obeys linear elasticity and Prandtl Reuss flow rule
with Mises yield condition. Also, material hardening is considered.

Additional notes

Please makr sure, that all items in subtree Inelasticity are defined.

Data objects of MaterialElastoplastic:

’ Data name ‘ type ‘ R ‘ default description
Material number integer R |4
material _type string "MaterialElastoplastic"
type of the material
name string "MaterialElastoplastic"
name of the material
Graphics
| Graphics.color | vector \ | [0, 0, 1] material color (as yet used with FEMesh, only) |

Solid

316 CHAPTER 3. HOTINT REFERENCE MANUAL

Solid.plane bool 0 true: 2D, false: 3D

Solid.plane _stress bool 0 for 2D-Elements only; 1: plane stress, 0: plane
strain

Solid.density double 0 material density, must not be set for static pro-
blems

Solid.youngs modulus double 0 Youngs modulus

Solid.poisson _ratio double 0 Poisson ratio

Solid. bool 0 check to enable orthotropic parameters

is_orthotropic_material

Solid.Orthotropic

Solid.Orthotropic.E1 double 0 elasticity along axis 1

Solid.Orthotropic.E2 double 0 elasticity along axis 2

Solid.Orthotropic.E3 double 0 elasticity along axis 3

Solid.Orthotropic.NU12 double 0 poisson ration 12

Solid.Orthotropic.NU13 double 0 poisson ration 13

Solid.Orthotropic.NU23 double 0 poisson ration 23

Solid.Orthotropic.G12 double 0 shear modulus 12

Solid.Orthotropic.G13 double 0 shear modulus 13

Solid.Orthotropic.G23 double 0 shear modulus 23

Damping

Damping.c M double 0 used for Rayleigh damping (C = ¢ M * M +
c K*K)

Damping.c K double 0 used for Rayleigh damping (C =c¢c M * M +
c K*K)

Inelasticity

Inelasticity.inelasti- string "fixed point" fixed point, return mapping (see Simo and

city solution method Hughes, Computational Inelasticity 1998)

Inelasticity.yield _stress double 0 Yield Stress S_y, used for yield criterion: Mi-
ses(S) := sqrt(2./3.)*|dev S| <=S_y, with S de-
noting 2PK stress tensor

Inelasticity. double 0 Tangent module K used in plastic zones, i.e. K =

tangent _module d(Mises(S))/d|Ep|, corresponds to formerly used
module of hardening H = sqrt(K)/S_y

Inelasticity. integer R 7 number of inelastic variables used by material

nr_inelastic_ variables class

3.5.4 MaterialElastoplasticThermalExpansion

Short description

MaterialElastoplasticThermalExpansion is an elastoplatic material which considers thermal

expansion

Data objects of MaterialElastoplasticThermalExpansion:

| Data name | type | R | default description
Material number integer R |4
material _type string "MaterialElastoplasticThermalExpansion"
type of the material
name string "MaterialElastoplasticThermalExpansion"
name of the material
Graphics
| Graphics.color | vector ‘ | [0, 0, 1] material color (as yet used with FEMesh, only) |
Solid
| Solid.plane | bool | | 0 true: 2D, false: 3D |

3.5. MATERIAL

317

Solid.plane _stress bool 0 for 2D-Elements only; 1: plane stress, 0: plane
strain

Solid.density double 0 material density, must not be set for static pro-
blems

Solid.youngs modulus double 0 Youngs modulus

Solid.poisson _ratio double 0 Poisson ratio

Solid. bool 0 check to enable orthotropic parameters

is_orthotropic material

Solid.Orthotropic

Solid.Orthotropic.E1 double 0 elasticity along axis 1

Solid.Orthotropic.E2 double 0 elasticity along axis 2

Solid.Orthotropic.E3 double 0 elasticity along axis 3

Solid.Orthotropic.NU12 double 0 poisson ration 12

Solid.Orthotropic.NU13 double 0 poisson ration 13

Solid.Orthotropic.NU23 double 0 poisson ration 23

Solid.Orthotropic.G12 double 0 shear modulus 12

Solid.Orthotropic.G13 double 0 shear modulus 13

Solid.Orthotropic.G23 double 0 shear modulus 23

Damping

Damping.c M double 0 used for Rayleigh damping (C = ¢ M * M +
c K*K)

Damping.c K double 0 used for Rayleigh damping (C = ¢ M * M +
c K*K)

Inelasticity

Inelasticity.inelasti- string "fixed point" fixed point, return mapping (see Simo and

city solution method Hughes, Computational Inelasticity 1998)

Inelasticity.yield _stress double 0 Yield Stress S_y, used for yield criterion: Mi-
ses(S) = sqrt(2./3.)*|dev S| <=S_y, with S de-
noting 2PK stress tensor

Inelasticity. double 0 Tangent module K used in plastic zones, i.e. K =

tangent module d(Mises(S))/d|Ep|, corresponds to formerly used
module of hardening H = sqrt(K)/S_y

Inelasticity. integer 7 number of inelastic variables used by material

nr_inelastic variables class

ThermalExpansion

ThermalExpansion. double 0 temperature difference to reference material

delta T

ThermalExpansion. double 0 thermal expansion coefficient

coefficient

318 CHAPTER 3. HOTINT REFERENCE MANUAL

3.6 BeamProperties

These beam properties are available:
e Beam3DProperties,

Note:

In HOTINT several classes are treated as ‘'material’. BeamProperties are also 'materials’, and
can therefore be edited and deleted in the GUI with the menu items of the materials.

In the script language the command AddBeamProperties has to be used for the beam properties
in the list above.

3.6.1 Beam3DProperties
Short description

Beam3DProperties defines material and geometric properties for beam structural finite ele-
ments.

Additional notes

First, specify the cross section type of the beam, which may be either rectangular (if set
to 1), circular (if set to 2), or tubular (if set to 3) or polygonal (if set to 4). In either case the
cross_section size is a vector of 2, 1, 2, or 2n entries, where n confers to the number of
vertices of a closed polygon. Then specify the stiffnesses and moments of inertias, as they are
neede by your beam and problem.

Data objects of Beam3DProperties:

‘ Data name ‘ type ‘ R ‘ default description

Material number integer R |4

material _type string "Beam3DProperties"
type of the material

name string "Beam3DProperties"
name of the material

Graphics

| Graphics.color | vector \ | [0, 0, 1] material color (as yet used with FEMesh, only) |

Solid

Solid.density double 0 material density, must not be set for static pro-
blems

Solid.youngs modulus double 0 Youngs modulus

Solid.poisson _ratio double 0 Poisson ratio

Damping

Damping.c M double 0 used for Rayleigh damping (C = ¢ M * M +
c K*K)

Damping.c K double 0 used for Rayleigh damping (C = ¢ M * M +
c K*K)

Inelasticity

Inelasticity.inelasti- string "fixed point" fixed point, return mapping (see Simo and

city _solution method Hughes, Computational Inelasticity 1998)

Inelasticity.yield _stress double 0 Yield Stress s_y, e.g., |[devs| <=s_y

Inelasticity. double 0 Modulus of hardening H

tangent module

Inelasticity. integer R 0 number of inelastic variables used by material

nr_inelastic_ variables class

3.6. BEAMPROPERTIES

319

cross_section type integer 1 1: rectangular, 2: circular, 3: tubular, 4: polygo-
nal

cross_section _ size vector [0, 0] vector length of cross section size depends on
cross_section _type: length 1 for circular cross
section, length 2 for rectangular cross section (y
and z extension) or tubular cross section (outer
and inner diameter) , and length 2*n for polygo-
nal cross section (ply,plz,p2y,p2z,...,pny,pnz)

cross_section_area double R |0 area of the beam’s cross section

Ix double R 0 polar moment of inertia of the beams cross section

Iy double R 0 area moment of inertia of the beams cross section
w.r.t. y-axis (2D-beam)

Iz double R 0 area moment of inertia of the beams cross section
w.r.t. z-axis

EA double -1 youngs modulus * area

Ely double -1 bending stiffness w.r.t. y-axis (2D-beam)

Elz double -1 bending stiffness w.r.t. z-axis

GAky double -1 shear stiffness including shear correction factor ky
(2D-beam)

GAkz double -1 shear stiffness including shear correction factor kz

GJkx double -1 torsional stiffness including shear correction fac-
tor kx

RhoA double -1 density * area

Rholx double -1 density * second area of moment w.r.t. x-axis

Rholy double -1 density * second area of moment w.r.t. y-axis
(2D-beam)

Rholz double -1 density * second area of moment w.r.t. z-axis

Example

see file Beam3DProperties.txt

bp

{
material_type= "Beam3DProperties"
cross_section_type= 1
cross_section_size= [0.1, 0.1]
EA= 2100000000
EIy= 1750000
EIz= 1750000
GJkx= 2692307.692307693

}

nBeamProperties = AddBeamProperties (bp)

320 CHAPTER 3. HOTINT REFERENCE MANUAL

3.7 Node

These nodes are available:

e Node3D, |3.7.1

Node3DS1rot1,

Node3DS2S3,
Node3DRxyz, [3.7.4]

Node3DR123, [3.7.5

Node3DS1S2,

Note:

In HOTINT different types of nodes exist. The main difference between these types are the
number of degrees of freedom. Depending on the chosen type of an element, the correct node
has to be used. Each element provides some information about the needed nodes.

In the script language the command AddNode is used for adding a node to the system.

3.7.1 Node3D
Short description

Node3D is the basic finite element node in 3D. It owns a reference position in 3D, and 3 degrees
of freedom resembling the displacement in 3D.

Degrees of freedom

This node provides three degrees of freedom, all of which are components of the displacement
vector u = (q1, ¢2, g3)* measured in the global frame of the multibody system.

Geometry

The geometry of the node is defined by its current position r measured in the global frame
of the multibody system, which is the sum of the user defined reference position rg and the
displacement vector u, which is composed of the nodal degrees of freedom.

Data objects of Node3D:

| Data name | type | R | default description |

node type string "Node3D" specification of node type. Once the node is ad-
ded to the mbs, you MUST NOT change this type
anymore!

name string "Node" Node identifier.

node number integer 1 Node Number.

Geometry

Geometry. vector [0, 0, O] Position (2D/3D) in reference configuration.

reference_position

Initialization

Initialization. vector [0, 0, 0, 0, 0, 0]

node initial values initial values for all degrees of freedom of node

Graphics

Graphics.RGB _ color vector [0.4, 0.4, 0.1] [red, green, blue] color of element, range = 0..1,

Graphics.visible integer 1 Visibility of node.

3.7. NODE 321

Example

see file Node3D.txt

node

{
node_type = "Node3D"
Geometry.reference_position = [0,0,0]

¥
nNodel = AddNode(node)

3.7.2 Node3DSl1rotl
Short description

Node3DS1rot1 is a finite element node for elements in 3D, and provides 7 degrees of freedom.

Degrees of freedom

This node provides 7 degrees of freedom: the first 3 degrees of freedom are the displacement
(q1,¢2,q3)7 = u = r — r(, the next 3 DOFs denote the change of the first slope, which is the
partial derivative of the position (qq, g5, q6)T =r¢ —ro¢ with £ denoting the first of the three
coordinates (&, 7, () of the reference element, and the 7th degree of freedom is the local rotation
g7 = 0 of the node around its current direction S1.

Geometry

The reference geometry of the node is defined by the user via (a) Geometry.reference position
and (b) the rotation Geometry.reference rot angles. The rotation is prescribed by the user
in form of kardan angles (initially, local (S, Sz, S3) and global frame (z, y, z) are identical, then
rotate local frame around S1, then S2 and finally S3). The current position is evaluated by
adding displacement (the first three degrees of freedom) to the reference position of the node
(degrees of freedom: (g1, g2, q3)T), and the current rotation of the node is obtained by adding
the change of the first axis of the local frame (DOFs: (qq, gs, q6)T) to the first axis of the local
frame in reference configuration of the node, and finally rotating the two other axes around the
first axis of the local frame by the amount of the 7th degree of freedom ¢; = 6.

Data objects of Node3DS1rot1:

] Data name \ type \ R \ default description

node_type string "Node3DS1rot1" specification of node type. Once the node is ad-
ded to the mbs, you MUST NOT change this type
anymore!

name string "Node3DS1rot1l" Node identifier.

node number integer 1 Node Number.

Geometry

Geometry. vector [0, 0, 0] Position (2D/3D) in reference configuration.

reference position

Geometry. vector [0, 0, O] Kardan rotation angles (X,Y,Z) in rad in global

reference _rot _angles frame of node in reference configuration.

Initialization

322 CHAPTER 3. HOTINT REFERENCE MANUAL

Initialization. vector [0, 0, 0, 0, 0, 0,
node_initial values 0,0,0,0,0,0,0, initial values for all degrees of freedom of node
0]
Graphics
Graphics.RGB _ color vector [0.4, 0.4, 0.1] [red, green, blue] color of element, range = 0..1,
Graphics.visible integer 1 Visibility of node.
Example

see file Node3DS1rotl.txt

node

{
node_type= "Node3DSlrotl"
Geometry

{
reference_position= [0, 0, O]
reference_rot_angles= [0, 0, O]
}
}
nNodel = AddNode(node)

3.7.3 Node3DS2S3
Short description

Node3DS253 is a finite element node for elements in 3D, and provides 9 degrees of freedom.

Degrees of freedom

This node provides 9 degrees of freedom: the first 3 degrees of freedom are the displacement
(q1, G2, q3)T = u = r — 1y, the next 3 DOFs denote the change of the second slope, which are the
partial derivatives of the position (qq, gs, qﬁ)T =r, —ro, and (g7, gs, q9)T =T — 0 etq, Where
n and ¢ denote the second and third of the three coordinates (£, 7, () of the reference element.

Geometry

The reference geometry of the node is defined by the user via (a) Geometry.reference position
and (b) the slopes Geometry.ref slope2 and Geometry.ref slope3. The current position is
evaluated by adding the displacement (the first three degrees of freedom (q¢1, ¢o, Q3>T) to the
reference position of the node, and further the current slopes of the node are obtained by adding
the change of the second and third slopes (DOFs: (qq, g, qG)T and (g7, gs, qg)T) to the second
and third slopes in reference configuration of the node.

Data objects of Node3DS2S3:

| Data name | type | R | default description |
node type string "Node3DS2S3" specification of node type. Once the node is ad-
ded to the mbs, you MUST NOT change this type
anymore!
name string "Node3DS2S3" Node identifier.

node number integer 1 Node Number.

3.7. NODE 323
Geometry
Geometry. vector [0, 0, 0] Position (2D/3D) in reference configuration.
reference position
Geometry. vector [0, 1, 0] slope 2 of node in reference configuration.
reference slope2
Geometry. vector [0, 0, 1] slope 3 of node in reference configuration.
reference slope3
Initialization
Initialization. vector [0, 0, 0, 0, 0, 0,
node_initial values 0,0,0,0,0,0,0, initial values for all degrees of freedom of node

0,0, 0,0, 0]

Graphics
Graphics.RGB _ color vector [0.4, 0.4, 0.1] [red, green, blue] color of element, range = 0..1,
Graphics.visible integer 1 Visibility of node.

3.7.4 Node3DRxyz

Short description

Node3DRxyz is a finite element node in 3D. It has a 3D reference position, a reference orien-
tation described by bryant angles and 6 degrees of freedom.

Degrees of freedom

The first 3 degrees of freedom are used to describe the displacement (qi, 2, q3)7 = u =r — 1y,
the last 3 are used for the description of linearized (small) angles (¢, ¢,, ¢.)". All degrees of
freedom are w.r.t. the global coordinate system.

Geometry

The reference position of the node is defined by the user via Geometry.reference position
and the reference orientation via Geometry.reference rot angles. The current position is
evaluated by adding the displacement (the first three degrees of freedom (ql,qQ,qg)T) to the
reference position of the node.

Data objects of Node3DRxyz:

’ Data name ‘ type ‘ R ‘ default description ‘

node_type string "Node3DRxyz" specification of node type. Once the node is ad-
ded to the mbs, you MUST NOT change this type
anymore!

name string "Node3DRxyz" Node identifier.

node number integer 1 Node Number.

Geometry

Geometry. vector [0, 0, 0] Position (2D/3D) in reference configuration.

reference position

Geometry. vector [0, 0, 0] Kardan rotation angles (X,Y,Z) in rad in global

reference rot angles frame of node in reference configuration.

Initialization

Initialization. vector [0, 0, 0, 0, 0, 0,

node_initial values 0,0,0,0,0, 0] initial values for all degrees of freedom of node

Graphics

Graphics.RGB_ color vector [0.4, 0.4, 0.1] [red, green, blue] color of element, range = 0..1,

Graphics.visible integer 1 Visibility of node.

324 CHAPTER 3. HOTINT REFERENCE MANUAL

3.7.5 Node3DR123
Short description

Node3DR123 is a finite element node in 3D. It has a 3D reference position, a reference orien-
tation described by bryant angles and 6 degrees of freedom.

Degrees of freedom
The first 3 degrees of freedom are used to describe the displacement (qi, ¢, q3)7 = u =r — 1y,
the last 3 are used for the description of linearized (small) angles (¢, ¢,, ¢.)". All degrees of

freedom are w.r.t. the reference coordinate system of the node.

Geometry

The reference position of the node is defined by the user via Geometry.reference position
and the orientation via Geometry.reference rot angles. The current position is evaluated
by adding the displacement (the first three degrees of freedom (g1, o, Q3)T transformed into the
global coordinate system) to the reference position of the node.

Data objects of Node3DR123:

’ Data name ‘ type ‘ R ‘ default description ‘

node_type string "Node3DR123" specification of node type. Once the node is ad-
ded to the mbs, you MUST NOT change this type
anymore!

name string "Node3DR123" Node identifier.

node number integer 1 Node Number.

Geometry

Geometry. vector [0, 0, 0] Position (2D/3D) in reference configuration.

reference position

Geometry. vector [0, 0, O] Kardan rotation angles (X,Y,Z) in rad in global

reference _rot _angles frame of node in reference configuration.

Initialization

Initialization. vector [0, 0, 0, 0, 0, 0,

node_initial values 0,0,0,0,0, 0] initial values for all degrees of freedom of node

Graphics

Graphics.RGB _ color vector [0.4, 0.4, 0.1] [red, green, blue] color of element, range = 0..1,

Graphics.visible integer 1 Visibility of node.

3.7.6 Node3DS1S2
Short description

Node3DS1S2 is a finite element node for elements in 3D, and provides 9 degrees of freedom.

Degrees of freedom

This node provides 9 degrees of freedom: the first 3 degrees of freedom are the displacement
(q1,¢2,q3)7 = u=r — 1, the next 3 DOFs denote the change of the first slope, which are the
partial derivatives of the position (g, gs, q6)T =r¢ — 1o and (g7, gs, qg)T =T, — Igctq, Where
¢ and 7 denote the first and second of the three coordinates (£, 7, () of the reference element.

3.7. NODE

Geometry

325

The reference geometry of the node is defined by the user via (a) Geometry.reference position
and (b) the slopes Geometry.ref slopel and Geometry.ref slope2. The current position is
evaluated by adding the displacement (the first three degrees of freedom (qi,qa,¢3)") to the
reference position of the node, and further the current slopes of the node are obtained by adding

the change of the first and second slopes (DOFs: (q4, g5, g6

second slopes in reference configuration of the node.

Data objects of Node3DS1S2:

)T and (g7, gs, q9)T) to the first and

’ Data name ‘ type ‘ R ‘ default description ‘
node_type string "Node3DS1S2" specification of node type. Once the node is ad-
ded to the mbs, you MUST NOT change this type
anymore!
name string "Node3DS152" Node identifier.
node number integer 1 Node Number.
Geometry
Geometry. vector [0, 0, 0] Position (2D/3D) in reference configuration.
reference position
Geometry. vector [1, 0, 0] slope 1 of node in reference configuration.
reference _slopel
Geometry. vector [0, 1, O] slope 2 of node in reference configuration.
reference_slope2
Initialization
Initialization. vector [0, 0, 0, 0, 0, 0,
node_initial values 0,0,0,0,0,0,0, initial values for all degrees of freedom of node
0,0, 0,0, 0]
Graphics
Graphics.RGB_ color vector [0.4, 0.4, 0.1] [red, green, blue] color of element, range = 0..1,
Graphics.visible integer 1 Visibility of node.

326 CHAPTER 3. HOTINT REFERENCE MANUAL

3.8 Load

These loads are available:

e GCLoad,

e BodyLoad,

e ForceVector2D, [3.8.3

e ForceVector3D, [3.8.4]

e MomentVector3D,
e Gravity, |3.8.6

e SurfacePressure, [3.8.7

e BodyLoadSpatial,

For all loads it is possible to vary the value of the load with respect to time. The following
options are available:

1. MathFunction
2. I0OElement

3.8.0.1 MathFunction
The value F'(t) of a load at time ¢ is computed as:
F(t) = f(t)F (3.55)

f(t) represents the value of the MathFunction at time ¢, e.g. f(t) = sin(t).

F represents the (constant) force vector, if a force vector is used in the specific type of load,
e.g. ForceVector3D.

If no force vector is available for the load, then the load is defined by f(¢) only. Any additional
scalar value (e.g. load _value in GCLoad) is set to 1!

3.8.0.2 IOElement
The value F'(t) of a load at time ¢ is computed as:
F(t) = f(t)F (3.56)

f(t) represents the value of the output of the IOElement at time ¢. By the use of IOElements
it is possible to define loads, that are not only dependent on time, but on any possible input of
an [OElement.

F represents the (constant) force vector, if a force vector is used in the specific type of load,
e.g. ForceVector3D.

If no force vector is available for the load, then the load is defined by f(¢) only. Any additional
scalar value (e.g. load _value in GCLoad) is set to 1!

3.8.1 GCLoad

A load acting on a generalized coordinate (gc) of the element.

Data objects of GCLoad:

3.8. LOAD

327

| Data name | type | R | default description

name string "Load" name of the load

load _type string "GCLoad" specification of load type. Once the load is added
to the mbs, you MUST NOT change this type
anymore!

load number integer R 1 number of the load in the mbs

generalized _coordinate integer 1 (local) number of the generalized coordinate

load value double 0 value of the load acting in the direction of gene-
ralized _coordinate

load function type integer 0 time dependency of the load: 0..constant, 1..Mat-
hFunction, 2..I0Element

MathFunction

MathFunction. integer -1 modus for piecewise interpolation: -1=not piece-

piecewise _mode wise, 0=constant, 1=linear, 2=quadratic

MathFunction. vector (] supporting points (e.g. time or place) for piece-

piecewise points wise interpolation

MathFunction. vector (] values at supporting points

piecewise values

MathFunction. vector (] differential values at supporting points - for qua-

piecewise diff values dratic interpolation

MathFunction. string m string representing parsed function, e.g.

parsed function ’A*sin(omega*t)’

MathFunction.par- string m string representing parameter of parsed function,

sed function parameter eg. 't’

IOElement

IOElement. integer 0 number of IOElement in the mbs

input__element number

IOElement. integer 0 number of output of IOElement connected to this

input_local number element

Example

see file GCLoad.txt

myLoad
{

load_type = "GCLoad"

% define the load

generalized_coordinate = 1

load_value = 10

}

nLoad=AddLoad (myLoad)

emptyMass3D % define some element

{

element_type = "Mass3D"

Physics.mass= 1
loads =

3

nElement = AddElement (emptyMass3D)

[nLoad] % add the load to the element

%(1local) number of the generalized coordinate

328

3.8.2 BodyLoad

CHAPTER 3. HOTINT REFERENCE MANUAL

The load value is integrated over the volume of the body and applied to the body in the specified
direction. For the case of a rigid body, a force of size load value = density*gravity constant
applies a force according to the gravitational force.

Data objects of BodyLoad:

| Data name | type | R | default description
name string "Load" name of the load
load _type string "BodyLoad" specification of load type. Once the load is added
to the mbs, you MUST NOT change this type
anymore!
load number integer R 1 number of the load in the mbs
direction integer 1 direction of the load
load value double 0 value of the load acting
load function type integer 0 time dependency of the load: 0..constant, 1..Mat-
hFunction, 2..I0Element
MathFunction
MathFunction. integer -1 modus for piecewise interpolation: -1=not piece-
piecewise _mode wise, 0=constant, 1=linear, 2=quadratic
MathFunction. vector (] supporting points (e.g. time or place) for piece-
piecewise _points wise interpolation
MathFunction. vector (] values at supporting points
piecewise values
MathFunction. vector [] differential values at supporting points - for qua-
piecewise diff values dratic interpolation
MathFunction. string m string representing parsed function, e.g.
parsed function ’A*sin(omega*t)’
MathFunction.par- string m string representing parameter of parsed function,
sed function parameter eg. 't’
IOElement
IOElement. integer 0 number of IOElement in the mbs
input__element number
IOElement. integer 0 number of output of IOElement connected to this
input_local number element
3.8.3 ForceVector2D
Data objects of ForceVector2D:
| Data name | type | R | default description
name string "Load" name of the load
load _type string "ForceVector2D" specification of load type. Once the load is added
to the mbs, you MUST NOT change this type
anymore!
load number integer R 1 number of the load in the mbs
force vector vector 0,0 defines the magnitude and direction of the force
position vector 0,0 (local) position where the force is applied to the
element
local force integer 0 flag which describes, if local or global coordinate
system is used: 1 = force in local body coordinate
system, 0 = global force
load function type integer 0 time dependency of the load: 0..constant, 1..Mat-

hFunction, 2..I0Element

3.8. LOAD 329
MathFunction
MathFunction. integer -1 modus for piecewise interpolation: -1=not piece-
piecewise mode wise, 0=constant, 1=linear, 2—=quadratic
MathFunction. vector [l supporting points (e.g. time or place) for piece-
piecewise _points wise interpolation
MathFunction. vector [] values at supporting points
piecewise values
MathFunction. vector (] differential values at supporting points - for qua-
piecewise _diff values dratic interpolation
MathFunction. string m string representing parsed function, e.g.
parsed function ’A*sin(omega*t)’
MathFunction.par- string m string representing parameter of parsed function,
sed function parameter eg. t’
IOElement
IOElement. integer 0 number of IOElement in the mbs
input_element number
IOElement. integer 0 number of output of IOElement connected to this

input_local number

element

Example

see file ForceVector2D.txt

myLoad
{

load_type = "ForceVector2D"
force_vector = [10,0] % magnitude and direction

}

nLoad=AddLoad (myLoad)

L_x = 0.10 % length
L.y = 0.20 % width
Lz =

density= 7850

% define the load

myRigid2D % add rigid body

{

element_type= "Rigid2D"
name= "R2D" Yname of the element

Graphics.body_dimensions =

Physics
{

mass= density*L_x*L_y*L_z
moment_of_inertia= 1.0/12.0*mass*(L_x"2+L_y"~2)

3

Initialization

{

initial_position=
initial_rotation=
initial_velocity=
initial_angular_velocity= [0] Y%rad/s

(o, 0]
[0.0]
(o, 0]

[L_x, L_y, 0]
loads = [nLoad] % add the load to the element

% rotl_Z in rad

0.01 % height (for drawing and computation of mass)

hspecification of element type.

330

}
}
nElement = AddElement (myRigid2D)

3.8.4 ForceVector3D

CHAPTER 3. HOTINT REFERENCE MANUAL

A load acting on an element at a specified (local) position.

Data objects of ForceVector3D:

’ Data name ‘ type ‘ R ‘ default description

name string "Load" name of the load

load _type string "ForceVector3D" specification of load type. Once the load is added
to the mbs, you MUST NOT change this type
anymore!

load number integer R |1 number of the load in the mbs

force vector vector 0,0,0 defines the magnitude and direction of the force

position vector 0,0,0 (local) position where the force is applied to the
element

local force integer 0 flag which describes, if local or global coordinate
system is used: 1 = force in local body coordinate
system, 0 = global force

load _function _type integer 0 time dependency of the load: 0..constant, 1..Mat-
hFunction, 2..I0Element

MathFunction

MathFunction. integer -1 modus for piecewise interpolation: -1=not piece-

piecewise _mode wise, 0=constant, 1=linear, 2=quadratic

MathFunction. vector [] supporting points (e.g. time or place) for piece-

piecewise points wise interpolation

MathFunction. vector (] values at supporting points

piecewise _values

MathFunction. vector (] differential values at supporting points - for qua-

piecewise diff values dratic interpolation

MathFunction. string m string representing parsed function, e.g.

parsed function ’A*sin(omega*t)’

MathFunction.par- string m string representing parameter of parsed function,

sed function parameter eg. 't/

IOElement

IOElement. integer 0 number of IOElement in the mbs

input__element number

IOElement. integer 0 number of output of IOElement connected to this

input_local number element

Example

see file ForceVector3D.txt

myLoad % define the load
{
load_type = "ForceVector3D"
force_vector =

}
nLoad=AddLoad (myLoad)

[10,0,0] % magnitude and direction

3.8. LOAD

emptyMass3D ¥ define some element

{

}

element_type = "Mass3D"

Physics.mass= 1

loads = [nLoad] % add the load to the element

nElement = AddElement (emptyMass3D)

ViewingOptions.Loads.show_loads =
ViewingOptions.Loads.arrow_size

3.8.5 MomentVector3D

]
o
N

331

A torque acting on an element at a specified (local) position.

Data objects of MomentVector3D:

‘ Data name ‘ type ‘ R ‘ default description

name string "Load" name of the load

load _type string "MomentVector3D"
specification of load type. Once the load is added
to the mbs, you MUST NOT change this type
anymore!

load number integer R 1 number of the load in the mbs

moment__vector vector [0, 0, 0] defines the magnitude and direction of the mo-
ment

position vector [0, 0, O] (local) position where the moment is applied to
the element

local moment integer 0 flag which describes, if local or global coordinate
system is used: 1 = moment in local body coor-
dinate system, 0 = global moment

load function type integer 0 time dependency of the load: 0..constant, 1..Mat-
hFunction, 2..I0Element

MathFunction

MathFunction. integer -1 modus for piecewise interpolation: -1=not piece-

piecewise _mode wise, 0=constant, 1=linear, 2=quadratic

MathFunction. vector (] supporting points (e.g. time or place) for piece-

piecewise _points wise interpolation

MathFunction. vector (] values at supporting points

piecewise values

MathFunction. vector (] differential values at supporting points - for qua-

piecewise diff values dratic interpolation

MathFunction. string m string representing parsed function, e.g.

parsed function ’A*sin(omega*t)’

MathFunction.par- string m string representing parameter of parsed function,

sed function parameter eg. 't’

IOElement

IOElement. integer 0 number of IOElement in the mbs

input__element number

IOElement. integer 0 number of output of IOElement connected to this

input_local number element

332

3.8.6 Grayvity

CHAPTER 3. HOTINT REFERENCE MANUAL

The load is integrated over the volume of the body and applied to the body in the specified
direction. The density of the body is used to compute the force.

Data objects of Gravity:

direction = 2
gravity_constant =

}

nLoad=AddLoad (myLoad)

9.81

emptyMass3D ¥ define some element

{

element_type = "Mass3D"

Physics.mass= 1
loads =

[nLoad] % add the load to the element

] Data name \ type \ R \ default description
name string "Load" name of the load
load _type string "Gravity" specification of load type. Once the load is added
to the mbs, you MUST NOT change this type
anymore!
load number integer R 1 number of the load in the mbs
direction integer 1 global direction of the gravity
gravity _constant double 9.81 use negative sign if necessary
load _function _type integer 0 time dependency of the load: 0..constant, 1..Mat-
hFunction, 2..I0Element
MathFunction
MathFunction. integer -1 modus for piecewise interpolation: -1=not piece-
piecewise _mode wise, 0=constant, 1=linear, 2=quadratic
MathFunction. vector [l supporting points (e.g. time or place) for piece-
piecewise points wise interpolation
MathFunction. vector (] values at supporting points
piecewise values
MathFunction. vector (] differential values at supporting points - for qua-
piecewise diff values dratic interpolation
MathFunction. string m string representing parsed function, e.g.
parsed function "A*sin(omega*t)’
MathFunction.par- string m string representing parameter of parsed function,
sed function parameter eg. 't/
IOElement
IOElement. integer 0 number of IOElement in the mbs
input__element number
IOElement. integer 0 number of output of IOElement connected to this
input_local number element
Example
see file Gravity.txt
myLoad % define the load
{
load_type = "Gravity"
name = "gravity for all elements"

3.8. LOAD

3

nElement = AddElement (emptyMass3D)

ViewingOptions.Loads.show_loads =
ViewingOptions.Loads.arrow_size

3.8.7 SurfacePressure

]
(@}
N

Data objects of SurfacePressure:

333

] Data name \ type \ R \ default description
name string "Load" name of the load
load type string "SurfacePressure"
specification of load type. Once the load is added
to the mbs, you MUST NOT change this type
anymore!
load number integer R 1 number of the load in the mbs
direction integer 1 local surface (inner/outer)
surface pressure double 0 use negative sign if necessary
load _function _type integer 0 time dependency of the load: 0..constant, 1..Mat-
hFunction, 2..I0Element
MathFunction
MathFunction. integer -1 modus for piecewise interpolation: -1=not piece-
piecewise _mode wise, 0=constant, 1=linear, 2=quadratic
MathFunction. vector [l supporting points (e.g. time or place) for piece-
piecewise points wise interpolation
MathFunction. vector (] values at supporting points
piecewise values
MathFunction. vector (] differential values at supporting points - for qua-
piecewise diff values dratic interpolation
MathFunction. string m string representing parsed function, e.g.
parsed function "A*sin(omega*t)’
MathFunction.par- string m string representing parameter of parsed function,
sed function parameter eg. 't/
IOElement
IOElement. integer 0 number of IOElement in the mbs
input__element number
IOElement. integer 0 number of output of IOElement connected to this
input_local number element
3.8.8 BodyLoadSpatial
Data objects of BodyLoadSpatial:
] Data name \ type \ R \ default description
name string "BodyLoadSpatial"
name of the load
load _type string R "BodyLoadSpatial"
specification of load type. Once the load is added
to the mbs, you MUST NOT change this type
anymore!
load number integer R |1 number of the load in the mbs
direction integer 1 direction of the load
load _value double 0 value of the load acting

334

CHAPTER 3. HOTINT REFERENCE MANUAL

load _function _type integer 1 time dependency of the load: 0..constant, 1..Mat-
hFunction, 2..I0Element

MathFunction

MathFunction. integer -1 modus for piecewise interpolation: -1=not piece-

piecewise _mode wise, 0=constant, 1=linear, 2=quadratic

MathFunction. string m string representing parsed function, e.g.

parsed function "A*sin(omega*t)’

MathFunction.par- string "t x,y,z" string representing parameter of parsed function,

sed function parameter

eg. 't/

3.9. SENSOR 335

3.9 Sensor

These sensors are available:

e FVElementSensor, [3.9.1]

ElementSensor, [3.9.2]

LoadSensor, [3.9.3]

MultipleSensor, [3.9.4]

SystemSensor,
e FVGlobalPositionSensor, [3.9.6]

In HOTINT it is possible to access all degrees of freedom and many more interesting values
with sensors. In general these values are stored to a file at specified time steps. Many options
concerning these settings are available in SolverOptions.Solution.

You can use the PlotTool to visualize the sensor values but it is also possible to import the
solution file easily in other software for postprocessing.

If you want to modify sensor values online (e.g. convert the units from rad to degrees or subtract
an offset) it is recommended to use ControlElements.

In the script language the command AddSensor is used to add a sensor to the system.

3.9.1 FVElementSensor

The FieldVariableElementSensor evaluates the value of a field variable at a specified position.
There are two possibilities to define this position:

e clement number + local position
e element number + local node number

The descriptions of the elements above include a list of available field variables for each element.
Possible field variables are e.g.

e position, velocity and displacement
e bryant angle and angular velocity
e beam axial extension, beam torsion, beam curvature

e many more

Data objects of FVElementSensor:

] Data name \ type \ R \ default description

336 CHAPTER 3. HOTINT REFERENCE MANUAL

signal Storage Mode integer) storage mode of the sensor signal (0 -> no data
storage, 1 -> general solution file of the simula-
tion, 2 -> separate file with the results of this
particular sensor, 4 - internal array in memory -
all time signal points

sensor _number integer 1 number of the sensor in the mbs

name string "sensor" name of the sensor for the output files and for the
plot tool

precision integer -1 precision of output in solution = fi-
les. Use -1 for default (SolverOpti-
ons.Solution.Sensor.output _precision)

sensor _type string "FVElementSensor"
specification of sensor type. Once the sensor is
added to the mbs, you MUST NOT change this
type anymore!

element number integer 1 number of the element, to which the sensor is
applied

node number integer 0 local node number. If > 0, then the position of
this node is used.

local position vector [0, 0, O] local position at which the field variable is evalu-
ated.

field variable string "position" name of the field variable, e.g. ’position’; see the
documentation of the elements for the available
field variables

component string "x" component of the field variable, e.g. 'x’

Example

see file FVElementSensor.txt

emptyMass3D
{

element_type = "Mass3D"

Physics.mass= 1

}

nElement = AddElement (emptyMass3D)

sensor

{

sensor_type= "FVElementSensor"
Jnumber of the element

element_number= nElement
field_variable= '"position"
%component of the field variable

component= "x"

}

nSensor = AddSensor(sensor)

3.9.2 ElementSensor

Y%name of the field variable

The ElementSensor returns special values evaluated in the element. It can be used e.g. for
measuring a specific degree of freedom of an element. The descriptions of the elements above
include a list of available special values for each element.

Data objects of ElementSensor:

3.9. SENSOR

337

| Data name type | R | default description

signal Storage Mode integer 5 storage mode of the sensor signal (0 -> no data
storage, 1 -> general solution file of the simula-
tion, 2 -> separate file with the results of this
particular sensor, 4 - internal array in memory -
all time signal points

sensor _number integer R 1 number of the sensor in the mbs

name string "sensor" name of the sensor for the output files and for the
plot tool

precision integer -1 precision of output in solution fi-
les. Use -1 for default (SolverOpti-
ons.Solution.Sensor.output_ precision)

sensor_type string "ElementSensor" specification of sensor type. Once the sensor is
added to the mbs, you MUST NOT change this
type anymore!

element number integer 1 number of the element, to which the sensor is
applied

value string " special value of the element, use ”[]” to access vec-
tor or matrix values, e.g. force[l] or stress|2,3]

Example

see file ElementSensor.txt

emptyMass3D
{

element_type = "Mass3D"

Physics.mass= 1

}

nElement = AddElement (emptyMass3D)

ElemSensor

{

sensor_type= "ElementSensor"

element_number= nElement
value= "Internal.second_order_variable[1]"

}

nElemSensor = AddSensor (ElemSensor)

3.9.3 LoadSensor

The LoadSensor can be applied to loads in order to measure their time dependency. The value
F(t) of a load at time ¢ is computed (see the description of the loads for more details) as:

F(t) = f(t)F (3.57)

The LoadSensor returns the value of the factor f(t) and not the value F(¢). If the LoadSensor
is used for a scalar load (e.g. GCLoad), then f(¢) and F'(t) are equal. If the LoadSensor is used
for a load vector (e.g. ForceVector3D) then f(t) and F'(¢) may not be equal.

The LoadSensor can not be shown in the graphical output, because the load does not have a
position by itself and may be applied to several elements or nodes.

Data objects of LoadSensor:

338 CHAPTER 3. HOTINT REFERENCE MANUAL
| Data name type | R | default description
signal Storage Mode integer 5 storage mode of the sensor signal (0 -> no data
storage, 1 -> general solution file of the simula-
tion, 2 -> separate file with the results of this
particular sensor, 4 - internal array in memory -
all time signal points
sensor _number integer R 1 number of the sensor in the mbs
name string "sensor" name of the sensor for the output files and for the
plot tool
precision integer -1 precision of output in solution fi-
les. Use -1 for default (SolverOpti-
ons.Solution.Sensor.output_ precision)
sensor_type string "LoadSensor" specification of sensor type. Once the sensor is
added to the mbs, you MUST NOT change this
type anymore!
load number integer 1 number of the load, to which the sensor is applied

Example

see file LoadSensor.txt

myLoad % define the load

force_vector = [10,0,0] % magnitude and direction

{
load_type = "ForceVector3D"
load_function_type 1
MathFunction
{

piecewise_mode= -1

parsed_function= "sin(100*t)"
parsed_function_parameter= "t"
}

}

nLoad=AddLoad (myLoad)

% time dependent load

#modus -1=not piecewise
hstring representing parsed function
% parameter of parsed function

emptyMass3D define some element

{

element_type = "Mass3D"

Physics.mass= 1

loads = [nLoad] % add the load to the element

3

nElement = AddElement (emptyMass3D)

sensor

{

sensor_type= "LoadSensor"

load_number= nLoad

3

nSensor = AddSensor(sensor)

Y%number of the load

3.9. SENSOR

3.9.4 MultipleSensor

339

The MultipleSensor applies mathematical operations to a list of sensors. The sensor can be
used, e.g. to get the maximum or average value of a list of sensors. The following mathematical

operations are possible (use these words for ’operation’):

e average

e minimum
e maximuim
e sum

e norm

e norm?2

e maxabs

If weights are used, then the value of each sensor is multiplied with the weight before the
mathematical operation is performed. To compute a weighted sum of the first 4 sensors, the
entries would be e.g. sensor numbers = [1,2,3,4] and weights = [0.125,0.125,0.25,0.5].

Data objects of MultipleSensor:

| Data name

| type

| R | default

description

|

signal Storage Mode

integer

5

storage mode of the sensor signal (0 -> no data
storage, 1 -> general solution file of the simula-
tion, 2 -> separate file with the results of this
particular sensor, 4 - internal array in memory -
all time signal points

sensor _number

integer

1

number of the sensor in the mbs

name

string

"sensor"

name of the sensor for the output files and for the
plot tool

precision

integer

-1

precision of output in solution fi-
les. Use -1 for default (SolverOpti-
ons.Solution.Sensor.output_ precision)

sensor__type

string

"MultipleSensor"

specification of sensor type. Once the sensor is
added to the mbs, you MUST NOT change this
type anymore!

sensor _numbers

vector

number of the sensors, that are used for compu-
tation

weights

vector

weights for e.g. a weighted sum. This vector must
have the same length as sensor _numbers or must
be empty!

operation

string

"maximum"

mathematical operation that is applied to the sen-
sor values, e.g. 'maximum’’average’,...

3.9.5 SystemSensor

The SystemSensor can be applied to global degrees of freedom, eigenvalues, several iteration
numbers or performance indicators. It returns the value of the specified quantity at time ¢, and

340

CHAPTER 3. HOTINT REFERENCE MANUAL

can not be shown in the graphical output, because a system quantity does in general not have

a position by itself.

Data objects of SystemSensor:

’ Data name

‘ type

[R_|

default

description

signal Storage Mode

integer

5

storage mode of the sensor signal (0 -> no data
storage, 1 -> general solution file of the simula-
tion, 2 -> separate file with the results of this
particular sensor, 4 - internal array in memory -
all time signal points

sensor _number

integer

1

number of the sensor in the mbs

name

string

"Systemsensor"

name of the sensor for the output files and for the
plot tool

precision

integer

-1

precision of output in solution fi-
les. Use -1 for default (SolverOpti-
ons.Solution.Sensor.output _precision)

sensor__type

string

"SystemSensor"

specification of sensor type. Once the sensor is
added to the mbs, you MUST NOT change this
type anymore!

object

string

"none"

Object tracked by systemsensor. Is either
'DOF’ (global degree of freedom), ’'EV’
(global eigenvalue), ’jacobians’, new-
ton_iterations’, ‘newton _iterations total’,
"discontinuous_iterations’, 'ths_evaluations’,
'rhs_evaluations jacobian’, ‘volume’,
‘'potential _energy’, ’kinetic__energy’,
'FE color minimum’, ’FE _color maximum’,
"NNodes’, 'NElements’ or ’ElapsedTime’

global index

integer

Number of the global index. Has to be set if (and
only if) object is 'DOF’ or ’EV’.

set _number

integer

Example

see file SystemSensor.txt

myLoad % define the load

force_vector = [10,0,0] % magnitude and direction

{
load_type = "ForceVector3D"
load_function_type
MathFunction
{

piecewise_mode= -1

parsed_function= "sin(100*t)"
parsed_function_parameter= "t"
}

}

nLoad=AddLoad (myLoad)

1 % time dependent load

#modus -1=not piecewise
hstring representing parsed function
% parameter of parsed function

emptyMass3D ¥ define some element

{

element_type = "Mass3D"

3.9. SENSOR 341

Physics.mass= 1
loads = [nLoad] % add the load to the element

}

nElement = AddElement (emptyMass3D)
Systemsensor

{

name= "Systemsensor Jacobians" Yname of the sensor for the output files and for the plot too:

sensor_type= "SystemSensor" Jspecification of sensor type. Once the sensor is added to the ml

object= "jacobians" %0bject tracked by systemsensor. Is either ’DOF’ (global degree of freed

global_index= O %Number of the global index. Has to be set if (and only if) object is ’DOF’ «
b

AddSensor (Systemsensor)

Systemsensor.object= "rhs_evaluations"
Systemsensor.name= "Systemsensor RHS Evaluations"
AddSensor (Systemsensor)

Systemsensor.object= "DOF"
Systemsensor.global_index= 4
Systemsensor.name= "Systemsensor DOF 4"
AddSensor (Systemsensor)

3.9.6 FVGIlobalPositionSensor

The FieldVariableGlobalPositionSensor measures a particular field variable of a set of elements
at the first intersection found

e with a given plane (in case of beam elements), or
e with a given straight line (in case of plate/shell elements), or
e with a given global position (in case of solid elements).

The user specifies a list of related elements (related elements), whith which this sensor may
operate. In sequential order it is analysed if an element intersects with the given global hyper-
plane, global straight line, or global position. As soon as an intersection is found (in terms of
element number and a local position) the fieldvariable value at this position is returned. If no
intersection is found, then the sensor returns 0. Two member variables are required in total to
define all geometric properties of the three modes (a)-(c): one position vector (global position),
and one direction vector (global direction).

Data objects of FVGlobalPositionSensor:
| Data name | type | R | default description |

signal Storage Mode integer 5 storage mode of the sensor signal (0 -> no data
storage, 1 -> general solution file of the simula-
tion, 2 -> separate file with the results of this
particular sensor, 4 - internal array in memory -
all time signal points

sensor _number integer R |1 number of the sensor in the mbs

name string "sensor" name of the sensor for the output files and for the
plot tool

342 CHAPTER 3. HOTINT REFERENCE MANUAL

precision integer -1 precision of output in solution fi-
les. Use -1 for default (SolverOpti-
ons.Solution.Sensor.output_ precision)

sensor _type string "FVGlobalPositionSensor"
specification of sensor type. Once the sensor is
added to the mbs, you MUST NOT change this
type anymore!

related elements vector 1] list of elements, on which the sensor acts

global position vector 0,0,0 global position.

global _direction vector 1,0,0 either pane normal (case a) or direction of a
straight line (case b) or meaningless (case c).

field variable string "position" name of the field variable, e.g. ’position’; see the
documentation of the elements for the available
field variables

component string "x" component of the field variable, e.g. 'x’

3.10. SENSORPROCESSORS 343

3.10 SensorProcessors

These sensors are available:
e no SensorProcessor available

SensorProcessors are objects that can perform operations on sensog signals. A Sensor can have
any number of processors associated to it, they are applied in the sequence they are added. (
Processor 1 is applied to the initial signal, Processor 2 is applied to the result of Processor 1
SensorProcessors must be associated with a Sensor. In the script Language use the Command
AddSensorProcessor to add to a specific Sensor.

344

3.11 GeomElement

These GeomElements are available:

e GeomMesh3D, 3.11.1

e GeomCylinder3D, |3.11.2

e GeomSphere3D, [3.11.3

e GeomCube3D, |3.11.4

e GeomOrthoCube3D, [3.11.5

CHAPTER 3. HOTINT REFERENCE MANUAL

GeomElements are used in HOTINT to improve the appearance of your simulation model.
GeomElements do not have any physical meaning in HOTINT and have to be attached to
the ground or some (real) reference element. The GeomElement will move with this reference

element.

GeomElements are also a good tool to define surfaces e.g. used for coupled simulations with
fluid-structure interaction.
In the script language the command AddGeomElement is used to add GeomElements to the

system.

3.11.1 GeomMesh3D

Data objects of GeomMesh3D:

| Data name | type default description |

geom _element type string "GeomMesh3D" specification of GeomElement type. Once the
element is added to the mbs, you MUST NOT
change this type anymore!

name string "GeomElement" name of the GeomElement

reference element number integer 0 0 ... ground, otherwise insert number of existing
element

Graphics

Graphics.RGB __color vector [0.2, 0.2, 0.8] [red, green, blue], range = 0..1

Graphics.transparency double -1 transparency [0..1], O=transparent, 1=solid, set
-1 if global transparency is used

Graphics.drawstyle integer 3 +1: draw outline, +2 fill area, +4 highlight
points, +8 colored: outline

Graphics.pointsize double 0.1 size for highlighted points [m]

Graphics.linethickness double 1 thickness of lines [pts]

Graphics. bool 1 Draw smooth interpolation of surface

smooth _drawing

Graphics. double 36 Minimum angle between two triangles that defi-

draw _edge angle nes an edge ()

tolerance double 0 if two points are closer than tolerance, they are
treated as same point

tolerance double 0 tolerance computes as tolerance relative times
the radius of the bounding box of the points

Geometry

Geometry. vector [1, 1, 1] Resize GeomElement in X, Y and Z direction [sX,

transform _ scale sY, sZ]

Geometry. vector [0, 0, O] Resize GeomElement in X, Y and Z direction [sX,

transform rotation

sY, sZ]

3.11. GEOMELEMENT 345
Geometry. vector [0, 0, 0] Translate GeomElement in X, Y and Z direction
transform__position [tX, tY, tZ]

MeshData

MeshData.triangles matrix [l Fill in point numbers of each triangle: p1, p2, p3;
p4, p5, pb ...

MeshData.points matrix [] Fill in point coordinates: X1, Y1, Z1; X2, Y2, Z2
3.11.2 GeomCylinder3D
Data objects of GeomCylinder3D:
’ Data name ‘ type ‘ R ‘ default description ‘
geom _element _type string "GeomCylinder3D"
specification of GeomElement type. Once the
element is added to the mbs, you MUST NOT
change this type anymore!

name string "GeomElement" name of the GeomElement

reference element numbey integer 0 0 ... ground, otherwise insert number of existing
element

Graphics

Graphics.RGB __color vector [0.2, 0.2, 0.8] [red, green, blue], range = 0..1

Graphics.transparency double -1 transparency [0..1], O=transparent, 1=solid, set
-1 if global transparency is used

Graphics.drawstyle integer 3 +1: draw outline, +2 fill area, +4 highlight
points, +8 colored: outline

Graphics.pointsize double 0.1 size for highlighted points [m]

Graphics.linethickness double 1 thickness of lines [pts]

Graphics.draw _resolution | integer 16 Number of quadrangles to draw the cylinder sur-
face

Graphics.split _coloring bool 0 true if one side should be slightly lighter than the
other

Geometry

Geometry.radius double 0 radius of the cylinder

Geometry.radius__hole double 0 inner radius of the cylinder (0 if full cylinder)

Geometry.axis _point1 vector 0,0,0 point on axis of rotation

Geometry.axis_point2 vector 0,0,0 point on axis of rotation

3.11.3 GeomSphere3D

Data objects of GeomSphere3D:

| Data name | type | R | default description |
geom _element type string "GeomSphere3D" specification of GeomElement type. Once the

element is added to the mbs, you MUST NOT
change this type anymore!
name string "GeomElement" name of the GeomElement
reference element number integer 0 0 ... ground, otherwise insert number of existing
element
Graphics
] Graphics.RGB _color \ vector \ \ [0.2, 0.2, 0.8] [red, green, blue], range = 0..1

346 CHAPTER 3. HOTINT REFERENCE MANUAL
Graphics.transparency double -1 transparency [0..1], O=transparent, 1=solid, set
-1 if global transparency is used
Graphics.drawstyle integer 3 +1: draw outline, +2 fill area, +4 highlight
points, +8 colored: outline
Graphics.pointsize double 0.1 size for highlighted points [m]
Graphics.linethickness double 1 thickness of lines [pts]
Graphics.draw _resolution | integer 16 Number of quadrangles to draw the sphere
Geometry
Geometry.radius double 0 radius of the sphere
Geometry.center _point vector [0, 0, O] center point of the sphere
3.11.4 GeomCube3D
Data objects of GeomCube3D:
’ Data name ‘ type ‘ R ‘ default description ‘
geom _element type string "GeomCube3D" specification of GeomElement type. Once the
element is added to the mbs, you MUST NOT
change this type anymore!
name string "GeomElement" name of the GeomElement
reference _element numbey integer 0 0 ... ground, otherwise insert number of existing
element
Graphics
Graphics.RGB _ color vector [0.2, 0.2, 0.8] [red, green, blue], range = 0..1
Graphics.transparency double -1 transparency [0..1], O=transparent, 1=solid, set
-1 if global transparency is used
Graphics.drawstyle integer 3 +1: draw outline, +2 fill area, +4 highlight
points, +8 colored: outline
Graphics.pointsize double 0.1 size for highlighted points [m]
Graphics.linethickness double 1 thickness of lines [pts]
Geometry
Geometry.point1 vector [-0.5, -0.5, -0.5]
Bottom point 1 of bottom points: 1-2-4-3
Geometry.point2 vector [0.5, -0.5, -0.5]
Bottom point 2 of bottom points: 1-2-4-3
Geometry.point3 vector [-0.5, 0.5, -0.5]
Bottom point 3 of bottom points: 1-2-4-3
Geometry.point4 vector [0.5, 0.5, -0.5]
Bottom point 4 of bottom points: 1-2-4-3
Geometry.point) vector [-0.5, -0.5, 0.5]
Bottom point 5 of bottom points: 5-6-8-7
Geometry.point6 vector [0.5, -0.5, 0.5]
Bottom point 6 of bottom points: 5-6-8-7
Geometry.point7 vector [-0.5, 0.5, 0.5]
Bottom point 7 of bottom points: 5-6-8-7
Geometry.point8 vector [0.5, 0.5, 0.5] Bottom point 8 of bottom points: 5-6-8-7

3.11.5 GeomOrthoCube3D

Data objects of GeomOrthoCube3D:

‘ Data name

‘ type

‘ R ‘ default

description

3.11. GEOMELEMENT 347

geom _element_type string "GeomOrthoCube3D"
specification of GeomElement type. Once the
element is added to the mbs, you MUST NOT
change this type anymore!

name string "GeomElement" name of the GeomElement

reference element numbey integer 0 0 ... ground, otherwise insert number of existing
element

Graphics

Graphics.RGB _color vector [0.2, 0.2, 0.8] [red, green, blue], range = 0..1

Graphics.transparency double -1 transparency [0..1], O=transparent, 1=solid, set
-1 if global transparency is used

Graphics.drawstyle integer 3 +1: draw outline, +2 fill area, +4 highlight
points, +8 colored: outline

Graphics.pointsize double 0.1 size for highlighted points [m]

Graphics.linethickness double 1 thickness of lines [pts]

Geometry

Geometry.center _point vector 0,0,0 Center point in global coordinates

Geometry.size vector 1,11 Dimension of cube in X, Y and Z-direction

Geometry. matrix 1, 0,0; 0, 1, 0

rotation matrix 0,0, 1] The rotation matrix defines the orientation of the

cube (global point = matrix . local point).

348 CHAPTER 3. HOTINT REFERENCE MANUAL

3.12 Set

These Sets are available:

ElementSet,
GlobalNodeSet,
LocalNodeSetA,
LocalNodeSetB,
GlobalCoordSet,
LocalCoordSetA,
LocalCoordSetB,
FaceSetA,
SensorSet,

In HOTINT sets of different types can be defined. They fall in different categories (ElementSets,
PointSet). For some categories there is more then one possibility to define a set of a given type.
The PointSet can be defined as, for example list of global positions, list of elements and local
nodes, ...

Sets can be manipulated via the GUI (add, edit, delete). The script language also provides the
command AddSet.

The different possibilities to define a set all lead to the same data for further processing. All
PointSets are converted to a list of (element number,local position) when used by a command.
Sets can be used as input parameters for functions to generate constraints, manipulate proper-
ties.

3.12.1 ElementSet

defines set of elements

Data objects of ElementSet:

’ Data name ‘ type ‘ R ‘ default description
set name string "ElementSet" the name of the set
set__type string "ElementSet" type of the set
element numbers vector (] Elements in this set

3.12.2 GlobalNodeSet

defines set of global nodes
Data objects of GlobalNodeSet:

’ Data name ‘ type ‘ R ‘ default description
set name string "GlobalNodeSet" the name of the set
set__type string "GlobalNodeSet" type of the set
element numbers vector R |]] Elements in this set

3.12. SET 349
local positions matrix R Local positions on the elements in this set
global node numbers vector Global Nodes in this set
local node numbers vector R Local node numbers on the elements in this set

3.12.3 LocalNodeSetA

defines pairs of (element,local nodes)

Data objects of LocalNodeSetA:

] Data name \ type \ R \ default description
set name string "LocalNodeSetA" the name of the set
set__type string "LocalNodeSetA" type of the set
element numbers vector Elements in this set
local positions matrix R Local positions on the elements in this set
local node numbers vector Local Nodes in this set

3.12.4 LocalNodeSetB

defines set of elements and set of local nodes valid for each of these elements - all combinations

Data objects of LocalNodeSetB:

] Data name \ type \ R \ default description
set _name string "LocalNodeSetB" the name of the set
set_type string "LocalNodeSetB" type of the set
element numbers vector R Elements in this set
local positions matrix R Local positions on the elements in this set
element numbers shortlis{ vector Shortlist of Elements in this set
local node numbers shortlistctor Shortlist of Local Nodes in this set

3.12.5 GlobalCoordSet

defines set of global positions

Data objects of GlobalCoordSet:

’ Data name ‘ type ‘ R ‘ default description
set _name string "GlobalCoordSet"
the name of the set
set__type string "GlobalCoordSet"
type of the set
element numbers vector R Elements in this set
local positions matrix R Local positions on the elements in this set
global positions matrix Global positions registered in this set

3.12.6 LocalCoordSetA

defines pairs of (element,local positions)

350 CHAPTER 3. HOTINT REFERENCE MANUAL

Data objects of LocalCoordSetA:

’ Data name ‘ type ‘ R ‘ default description
set _name string "LocalCoordSetA"
the name of the set
set_type string "LocalCoordSetA"
type of the set
element numbers vector Elements in this set
local positions matrix Local positions on the elements in this set

3.12.7 LocalCoordSetB

defines set of elements and set of local positions valid for each of these elements - all combina-
tions

Data objects of LocalCoordSetB:

| Data name | type | R | default description
set _name string "LocalCoordSetB"
the name of the set
set__type string "LocalCoordSetB"
type of the set
element numbers vector R Elements in this set
local positions matrix R Local positions on the elements in this set
element numbers shortlis{ vector Shortlist of Elements in this set
local positions shortlist | matrix Shortlist of Local Positions in this set

3.12.8 FaceSetA

defines set of element faces

Data objects of FaceSetA:

| Data name | type | R | default description
set _name string "FaceSetA" the name of the set
set__type string "FaceSetA" type of the set
element numbers vector Elements in this set
face_numbers vector ElementFaces in this set
number of nodes vector R number of nodes for each face in this set
node_ lists matrix R node list for each face in this set
node_lists local matrix R local node number in element
face _areas vector R ElementFaceAreas in this set
used nodes vector R all global nodes used in this set

3.12.9 SensorSet

defines set of sensors

Data objects of SensorSet:

’ Data name ‘ type ‘ R ‘ default description

3.12. SET

351

set name string "SensorSet" the name of the set
set__type string "SensorSet" type of the set
sensor__numbers vector (] Sensors in this set

352 CHAPTER 3. HOTINT REFERENCE MANUAL

3.13 Mesh

These Meshes are available:

e StructuralMesh, 3.13.1]
e SolidMesh, [3.13.2

To handle Meshes in HOTINT a tree-like structure is introduced. This allows to have simple
operations to

e generate meshes from geometric primitives

e load meshes from external sources in different formats

perform operations on parts of the mesh (or the entire mesh)

automatically connect two or more parts of the mesh

pick regions from the mesh after processing

HOTINT

time= 0s

Figure 3.75: assembly generated via Mesh

The root structure "Mesh’ can be a solid or a structural Mesh. When used in script language,
this applies some restrictions on the available operations. The type of a mesh must be known
when it is initially created.

Each Mesh consists of MeshComponents. The Components form a tree-like structure. Nodes
and Elements of the mesh reside in the components. From the script language the top level
components can be accessed.

The general idea is to store nodes and elements in the components as they are generated such
that no node is redundant. Access functions thus are often relayed to subordinate components

3.13. MESH

(child components of the tree).
All Mesh objects must be added to the MultiBodySystem with the AddMestToMBS com-
mand in both .cpp models and also .hid models. The Nodes and Elements are added to the

MBS individually.

353

When a MBS is saved the file will contain Nodes and Elements rather than the Mesh. Mani-
pulation via the HOTINT GUI is not implemented (yet) the 'Edit mesh’ menu option merely
provides information. Changes must be implemented in the .cpp model or the .hid file.

The procedure to generate a complex mesh structure is - for .hid and .cpp models alike - to

1. generate a new mesh object

2. add a source component to the mesh - leaf node always stays leaf node

3. insert other components between mesh and leaf

Tom=

Tom=z

Tom=z

il Transform:scale. —{= Source Plate
AT

-

Tom=z

More on the available components in

3.13.1 StructuralMesh

structural mesh

Source:Plate

Source:Plate

—{> Source:Plate

Tl
Source:Plate

Transform scals — Source Plate
e

Transform:scale —{= Source Plate
4

Data objects of StructuralMesh:

—i> Solree Plate

Tom=

Tom=

Process: Glue

Transform:scale —{~ Source:Plate
Py

vl
Transform:rotate —# Source:Plate

Transform:scale —~ Source:Plate
o
__ Source:Plate
—T=

—
Traneform: rotate —=- Source:Plate

1 Transform:scale —{> Sowrce:Plate

N
-

Tom=z

= Source Plate

—r

" Transformirotate —- Source:Plate

Figure 3.76: how the assembly is generated

‘ Data name ‘ type ‘ R ‘ default description
mesh name string "StructuralMesh"
the name of the mesh
mesh _type string "StructuralMesh"
type of the mesh
number_of nodes integer R |0 number of nodes in the mesh
list_of nodes vector R || MBS node numbers of the entire mesh
number of elements integer R |0 number of elements in the mesh
list_of elements vector R || MBS element numbers of the entire mesh
compute_surface bool 0 flag to automatically identify domain surfaces

354

Available Script Functions:
LoadMesh, WriteMesh, Modify, Transform, Distort, Linear2Quadratic, SplitHexes, Refine, Ro-
tate, Mirror, Extrude, AddMeshToMBS, GlueMesh, GetNodesInBox, GetElementsInBox, Get-
NodesInCylinder, GetNodesInSphere, GetNodesInFunction, GetNodePos, GetElementAtPosi-
tion, GetFacesFromNodes, GenerateBeam, GeneratePlate.

3.13.2 SolidMesh

solid mesh

Data objects of SolidMesh:

CHAPTER 3. HOTINT REFERENCE MANUAL

‘ Data name ‘ type ‘ R ‘ default description
mesh name string "SolidMesh" the name of the mesh
mesh _type string "SolidMesh" type of the mesh
number of nodes integer R |0 number of nodes in the mesh
list_of nodes vector R ||| MBS node numbers of the entire mesh
number of elements integer R |0 number of elements in the mesh
list_of _elements vector R ||| MBS element numbers of the entire mesh
compute_surface bool 0 flag to automatically identify domain surfaces

Available Script Functions:
LoadMesh, WriteMesh, Modify, Transform, Distort, Linear2Quadratic, SplitHexes, Refine, Ro-
tate, Mirror, Extrude, AddMeshToMBS, GlueMesh, GetNodesInBox, GetElementsInBox, Get-
NodesInCylinder, GetNodesInSphere, GetNodesInFunction, GetNodePos, GetElementAtPosi-
tion, GetFacesFromNodes, GenerateBlock, GenerateCylinder.

3.14. MESHCOMPONENTS 359

3.14 MeshComponents
These MeshComponents are available:

e Primitive: Block, [3.14.1
e Primitive: Cylinder, |3.14.2
e Primitive: Quadrilateral, |3.14.3

e Primitive: Curve, [3.14.4

e Extended: Mirror,

e Extended: Extrude,|3.14.6

e Extended: Rotational, [3.14.7]
e Extended: Lin2Quad,
e Extended: SplitHexes, [3.14.9

e Extended: Refine, |3.14.10

e Process: Transform, [3.14.11

e Process: Distort, |3.14.12
e Process: Modify, |3.14.13

e Process: WriterNeutral3D, [3.14.14

e Loader: NetGen2D, |3.14.15
e Loader: NetGen3D, [3.14.16
e Loader: Neutral3D, [3.14.17

e Loader: STL, [3.14.18
e Loader: DataArrays, [3.14.19

NOTE: currently the MeshComponents can not be added or truly manipulated via the GUL
They can be used with special Script-Commands e.g. Mesh.Rotate(component,parameters)
that insert the components at the root position automatically and of course also in cpp models.

The MeshComponents that are currently implemented fall in the following categories:
1 Sources - components that can have their own nodes and elements.
1.1 Primitive - defined geometry meshed regularly with simplest element. Generates own
nodes and elements.

1.2 DomainContainer - Container for the nodes and elements that are loaded from a file.

1.3 SourceExtended - require a subordinate mesh component. Generates additional or
completely replaces nodes and elements.

356

CHAPTER 3. HOTINT REFERENCE MANUAL

2 Processors - components that manipulate other components, strictly speaking no own nodes

and elements.

2.1 Single Subordinate Processors - require a subordinate mesh component. Manipulate

Node positions.

2.2 Multiple Subordinate Processors - require at least one subordinate component. Auto-

matic joining, import routines

All Mesh component classes are derived from a common base class following the ’decorator’
design pattern of object oriented programming.

Mash Blook Mash Quadrilaseral
{3 Block (Hduil, {24 Planar
gl ements: ;
Saonrn EamOniades
R Caners
Mashs Primbive Y g Computadrenialion
ke Mazn Cytincor Mash Curve
O ek, dmonetization c}— i eyfinces Al [ra L
ariumation vaciT A
Siza wacion
implaments: i
GanaratCweHoden GeneratCurhndes
- Dt rata e Elwinssts Canner
iy
Mesh Camaonen Sourcs
e ——
ety g Jabacer’ st MeshtinsarTotuacrtic MashExtruda
- 3 25 o, S sty
/ e "- b misdises csmnee,hicines
- Mm:uﬂl rademaning (Dt Elemeaemn gl
// © MoshSourgeExtended o —— Bt -]
,/J R e — aledePos fr——
/ 5 suhordnaie f,_."f_— Sas | MashSplitHees
f/ N, el 0 ety
- e " Mesh o | asis.seoninni gk
2 B
Mesh Companent ™~ \\\ Goraratahieciin, Glarsla Elrs
fatrstract tnnClos) MosnRafing MasnMirmar
ldent: name fpe nosierefingman el st
i emenmappng 1) (fodk emmaprng)
mawig ot ks | e =
s | Wiah Yrursall]| MeshYoursel)
=y 1
. |
g !
Mash Processor |
imunt hove subordnate) | Mezh Translormation Mesh Weiter
—
P— e R oo slnidaate} | (s sbsoiron
" Bessess — Fanufermafian malris {coralani)
| 'h‘-——q___q__ Mesh Distortion Wit aFin(
Mk Dlue e mitarsnala)
matns tetions)
Lty ecwrcant |
e - . i Mesh Loader Netgenz0 Mesh Loader STL
vt have subansrsted [!
= ety Mt formea} ABTL hrmal]
s stanikiaie v
g 2CN CEL CE, CE2| % :
st it T Mush Loadaor ___Mmm Tty
— o]
Jamnme souros] H—
[e— S — Mt Lissdnrisutral 30 Mosh Laader Dats Arrays
niflers: ponssements somains. T —— fhutee’]

Imprman:

LatFronFie LoadFmmEe

Figure 3.77: Class Diagram with most important class members and overridden methods

3.14.1 Primitive: Block

generates a hex-meshed block

Data objects of Primitive: Block:

] Data name \ type \ R \ default description

component _name string "Block" the name of the mesh component

component__type string "Block" type of the mesh component

list_of nodes vector R ||| MBS node numbers of the component - entries
’-1" or 0’ hint to nodes not actually used in mesh

list_of elements vector R |] MBS element numbers of the component - entries
’-1” or ’0’ hint to elements not actually used in
mesh

3.14. MESHCOMPONENTS 357

Generation

Generation.body index integer 1 the body index / domain number for the entire
mesh component

Generation. integer 1 the material number for the entire mesh compo-

material number nent

Generation.Geometri- integer -1 -l..use element defaults, 0..GNS_Linear,

cNonlinearityStatus 1..GNS_ NonlinearSmallStrain,
2..GNS_NonlinearLargeStrain

Generation. string "Node3D" node type used to instantiate the component

used node_type

Generation. string "Hexahedral" element type used to instantiate the component

used elem type

Generation.P1 vector [0, 0, O] defining points of the component in basic confi-
guration

Generation.P2 vector [1, 0, O] defining points of the component in basic confi-
guration

Generation.P3 vector [0, 1, 0] defining points of the component in basic confi-
guration

Generation.P4 vector [1, 1, 0] defining points of the component in basic confi-
guration

Generation.P5 vector [0, 0, 1] defining points of the component in basic confi-
guration

Generation.P6 vector [1, 0, 1] defining points of the component in basic confi-
guration

Generation.P7 vector [0, 1, 1] defining points of the component in basic confi-
guration

Generation.P8 vector [1, 1, 1] defining points of the component in basic confi-
guration

Generation.discretization | vector [1, 1, 1] discretization for block (x,y,z)

Graphics

Graphics.RGB __color vector [0.7, 0.7, 0.7] [red,green,blue] color of element, range = 0..1, use
default color:[-1,-1,-1]

3.14.2 Primitive: Cylinder

generates a hex-meshed 90t segment of a cylinder or pipe

Data objects of Primitive: Cylinder:

’ Data name ‘ type ‘ R ‘ default description

component name string "Cylinder" the name of the mesh component

component _type string "Cylinder" type of the mesh component

list_of nodes vector (] MBS node numbers of the component - entries
-1’ or 0’ hint to nodes not actually used in mesh

list_of elements vector R |] MBS element numbers of the component - entries
’-1” or ’0’ hint to elements not actually used in
mesh

Generation

Generation.body index integer 1 the body index / domain number for the entire
mesh component

Generation. integer 1 the material number for the entire mesh compo-

material number nent

Generation.Geometri- integer -1 -l..use element defaults, 0..GNS_Linear,

cNonlinearityStatus 1..GNS_ NonlinearSmallStrain,
2..GNS_NonlinearLargeStrain

358 CHAPTER 3. HOTINT REFERENCE MANUAL
Generation. string "Node3D" node type used to instantiate the component
used node_type
Generation. string "Hexahedral" element type used to instantiate the component
used elem type
Generation.P1 vector [0, 0, 0] defining points of the component in basic confi-
guration

Generation.P2 vector [1, 0, 0] defining points of the component in basic confi-
guration

Generation.P3 vector [0, 0, 1] defining points of the component in basic confi-
guration

Generation.P4 vector [1, 0, 1] defining points of the component in basic confi-
guration

Generation.discretization | vector [1, 1, 1] discretization for cylinder (rad,ang,axi)

Graphics

Graphics.RGB _ color vector [0.7, 0.7, 0.7] [red,green,blue] color of element, range = 0..1, use
default color:[-1,-1,-1]

3.14.3 Primitive: Quadrilateral

generates a quad-meshed quadtilateral

Data objects of Primitive: Quadrilateral:

’ Data name ‘ type ‘ R ‘ default description

component _name string "Quadrilateral” the name of the mesh component

component__type string "Quadrilateral" type of the mesh component

list_of mnodes vector (] MBS node numbers of the component - entries
-1’ or ’0’ hint to nodes not actually used in mesh

list_of elements vector R ||| MBS element numbers of the component - entries
’-1” or ’0’ hint to elements not actually used in
mesh

Generation

Generation.body index integer 1 the body index / domain number for the entire
mesh component

Generation. integer 1 the material number for the entire mesh compo-

material number nent

Generation.Geometri- integer -1 -l..use element defaults, 0..GNS_Linear,

cNonlinearityStatus 1..GNS_ NonlinearSmallStrain,
2..GNS_ NonlinearLargeStrain

Generation. string "Node3DS1S2" node type used to instantiate the component

used node_type

Generation. string "ANCFThinPlate3D"

used elem type element type used to instantiate the component

Generation.P1 vector [0, 0, O] defining points of the component in basic confi-
guration

Generation.P2 vector [1, 0, O] defining points of the component in basic confi-
guration

Generation.P3 vector [0, 1, 0] defining points of the component in basic confi-
guration

Generation.P4 vector [1, 1, 0] defining points of the component in basic confi-
guration

Generation.discretization | vector [1, 1] discretization for quadrilateral (x,y,*)

Generation.thickness double 0.001 thickness for all elements

Graphics

Graphics.RGB _ color vector [0.7, 0.7, 0.7] [red,green,blue] color of element, range = 0..1, use
default color:[-1,-1,-1]

3.14. MESHCOMPONENTS

3.14.4 Primitive: Curve

generates discretized beam

Data objects of Primitive: Curve:

359

’ Data name ‘ type ‘ R ‘ default description
component_name string "Linear" the name of the mesh component
component_type string "Linear" type of the mesh component
list_of nodes vector R || MBS node numbers of the component - entries
’-1" or 0’ hint to nodes not actually used in mesh
list_of elements vector R |] MBS element numbers of the component - entries
’-1” or ’0’ hint to elements not actually used in
mesh
Generation
Generation.body index integer 1 the body index / domain number for the entire
mesh component
Generation. integer 1 the material number for the entire mesh compo-
material number nent
Generation.Geometri- integer -1 -l..use element defaults, 0..GNS_Linear,
cNonlinearityStatus 1..GNS_ NonlinearSmallStrain,
2..GNS_NonlinearLargeStrain
Generation. string "Node3DRxyz" node type used to instantiate the component
used node_type
Generation. string "LinearBeam3D" element type used to instantiate the component
used elem type
Generation.P1 vector [0, 0, O] defining points of the component in basic confi-
guration
Generation.P2 vector [1, 0, 0] defining points of the component in basic confi-
guration
Generation.discretization | vector [1] discretization for linear (x,*,*)
Graphics
Graphics.RGB_ color vector [0.7, 0.7, 0.7] [red,green,blue] color of element, range = 0..1, use
default color:[-1,-1,-1]
3.14.5 Extended: Mirror
Mirror subordinate mesh component
Data objects of Extended: Mirror:
‘ Data name ‘ type ‘ R ‘ default description
component _name string "Mirror" the name of the mesh component
component _type string "Mirror" type of the mesh component
list_of nodes vector (] MBS node numbers of the component - entries
-1’ or ’0’ hint to nodes not actually used in mesh
list_of elements vector (] MBS element numbers of the component - entries
’-1” or ’0’ hint to elements not actually used in
mesh
Generation
Generation. string R "dependent"
same_as_seed node
Generation. string "dependent"
same_as_seed element

360 CHAPTER 3. HOTINT REFERENCE MANUAL
Generation.Geometri- integer -1 -l..use element defaults, 0..GNS_Linear,
cNonlinearityStatus 1..GNS_ NonlinearSmallStrain,
2..GNS_ NonlinearLargeStrain

Generation. string "dependent"

used node_type

Generation. string "dependent"

used elem type

Graphics

Graphics.RGB _color vector [0.7, 0.7, 0.7] [red,green,blue] color of element, range = 0..1, use
default color:[-1,-1,-1]

plane integer 1 1 for YZ plane, 2 for XZ plane, 3 for XY plane

distance double 0 mirror planes’ distance from origin

3.14.6 Extended: Extrude

extrudes subordinate mesh component along axis 1D to 2D, 2D to 3D

Data objects of Extended: Extrude:

’ Data name ‘ type ‘ R ‘ default description

component_name string "Extrude" the name of the mesh component

component_type string "Extrude" type of the mesh component

list_of nodes vector (] MBS node numbers of the component - entries
’-1" or 0’ hint to nodes not actually used in mesh

list_of elements vector (] MBS element numbers of the component - entries
’-1” or ’0’ hint to elements not actually used in
mesh

Generation

Generation. string "dependent"

same_as_seed node

Generation. string "dependent"

same_as_seed element

Generation.Geometri- integer -1 -l..use element defaults, 0..GNS_Linear,

cNonlinearityStatus 1..GNS_ NonlinearSmallStrain,
2..GNS_NonlinearLargeStrain

Generation. string "dependent"

used node_type

Generation. string "dependent"

used elem type

Generation.axis _number | integer 3 direction for extrusion along main axis

Generation.discretization | integer 1 discretization along extrusion axis

Generation. double 1 distance along extrusion axis

total extrusion

Generation.thickness double 0.1 plate thickness after extrusion

Graphics

Graphics.RGB _ color vector [0.7, 0.7, 0.7] [red,green,blue] color of element, range = 0..1, use
default color:[-1,-1,-1]

3.14.7 Extended: Rotational

rotates subordinate 2D mesh component around axis

Data objects of Extended: Rotational:

| Data name | type

| R | default

description

3.14. MESHCOMPONENTS

361

component name string "Rotate2D" the name of the mesh component

component _type string "Rotate2D" type of the mesh component

list_of nodes vector R || MBS node numbers of the component - entries
-1’ or 0’ hint to nodes not actually used in mesh

list_of elements vector (] MBS element numbers of the component - entries
’-1” or ’0’ hint to elements not actually used in
mesh

Generation

Generation. string R "dependent"

same_as_seed node

Generation. string "dependent"

same_as_seed element

Generation.Geometri- integer -1 -l..use element defaults, 0..GNS_Linear,

cNonlinearityStatus 1..GNS_ NonlinearSmallStrain,
2..GNS_NonlinearLargeStrain

Generation. string R "dependent"

used node_type

Generation. string R "dependent"

used elem type

Generation.nnodes integer R |0 number of nodes read from external source file

Generation.nelems integer R |0 number of elements read from external source file

Graphics

Graphics.RGB _ color vector [0.7, 0.7, 0.7] [red,green,blue] color of element, range = 0..1, use
default color:[-1,-1,-1]

3.14.8 Extended: Lin2Quad

converts all elements of subordinate mesh component to quadratic, adds required nodes

Data objects of Extended: Lin2Quad:

| Data name | type | R | default description

component _name string "LinearToQuadratic"
the name of the mesh component

component__type string "LinearToQuadratic"
type of the mesh component

list_of nodes vector R ||| MBS node numbers of the component - entries
-1’ or 0’ hint to nodes not actually used in mesh

list_of elements vector R |] MBS element numbers of the component - entries
’-1” or ’0’ hint to elements not actually used in
mesh

Generation

Generation. string "dependent"

same_as_seed node

Generation. string R "dependent"

same_as_seed element

Generation.Geometri- integer -1 -l..use element defaults, 0..GNS_Linear,

cNonlinearityStatus 1..GNS_ NonlinearSmallStrain,
2..GNS_NonlinearLargeStrain

Generation. string "dependent"

used node_type

Generation. string R "dependent"

used elem type

Graphics

Graphics.RGB_ color vector [0.7, 0.7, 0.7] [red,green,blue] color of element, range = 0..1, use
default color:[-1,-1,-1]

362

3.14.9 Extended: SplitHexes

CHAPTER 3. HOTINT REFERENCE MANUAL

converts all hexahedrals of subordinate mesh component to tets, prisms or pyramids

Data objects of Extended: SplitHexes:

’ Data name ‘ type ‘ R ‘ default description

component name string "SplitHexes" the name of the mesh component

component_type string "SplitHexes" type of the mesh component

list_of nodes vector R || MBS node numbers of the component - entries
’-1" or 0’ hint to nodes not actually used in mesh

list_of elements vector R |] MBS element numbers of the component - entries
’-1” or ’0’ hint to elements not actually used in
mesh

Generation

Generation. string "dependent"

same _as_seed node

Generation. string R "dependent"

same_as_seed element

Generation.Geometri- integer -1 -l..use element defaults, 0..GNS_Linear,

cNonlinearityStatus 1..GNS_ NonlinearSmallStrain,
2..GNS_NonlinearLargeStrain

Generation. string m node type used to instantiate the component

used node_type

Generation. string R m element type used to instantiate the component

used elem type

Graphics

Graphics.RGB _ color vector [0.7, 0.7, 0.7] [red,green,blue] color of element, range = 0..1, use
default color:[-1,-1,-1]

alternate bool 1 use alternate orientation for split mesh

3.14.10 Extended: Refine

refine subordinate hexahedral or quad mesh component

Data objects of Extended: Refine:

] Data name \ type \ R \ default description

component name string "Refine" the name of the mesh component

component_type string "Refine" type of the mesh component

list_of nodes vector R || MBS node numbers of the component - entries
’-1" or 0’ hint to nodes not actually used in mesh

list_of elements vector R |] MBS element numbers of the component - entries
1" or ’0’ hint to elements not actually used in
mesh

Generation

Generation. string "dependent"

same_as_seed node

Generation. string R "dependent"

same_as_seed element

Generation.Geometri- integer -1 -l..use element defaults, 0..GNS_Linear,

cNonlinearityStatus 1..GNS_NonlinearSmallStrain,
2..GNS_NonlinearLargeStrain

Generation. string R m node type used to instantiate the component

used node_type

3.14. MESHCOMPONENTS

363

Generation. string R m element type used to instantiate the component

used elem type

Graphics

Graphics.RGB _color vector [0, 0, O] [red,green,blue] color of element, range = 0..1, use
default color:[-1,-1,-1]

3.14.11 Process: Transform

translate, rotate, scale subordinate mesh component with constant transformation matrix

Data objects of Process: Transform:

‘ Data name ‘ type ‘ R ‘ default description

component _name string "Transformation"
the name of the mesh component

component__type string "Transformation"
type of the mesh component

list_of nodes vector (] MBS node numbers of the component - entries
’-1" or 0’ hint to nodes not actually used in mesh

list_of elements vector (] MBS element numbers of the component - entries
’-1” or ’0’ hint to elements not actually used in
mesh

Generation

Generation.body index integer 0 the body index / domain number for the entire
mesh component,

Generation. integer 0 the material number for the entire mesh compo-

material number nent

Generation.Geometri- integer -1 -l.use element defaults, 0..GNS_Linear,

cNonlinearityStatus 1..GNS_ NonlinearSmallStrain,
2..GNS_NonlinearLargeStrain

Graphics

Graphics.RGB _ color vector [0, 0, 0] [red,green,blue] color of element, range = 0..1, use
default color:[-1,-1,-1]

transformation matrix matrix [1, 0, 0, 0; 0, 1,

0,0;0,0,1,0;0, 4 dimensional transformation matrix - transla-
0,0, 1] tion-scale+rotation

3.14.12 Process: Distort

assign new node positions as any function of nodepositions as in subordinate mesh component

Data objects of Process: Distort:

| Data name | type | R | default description

component _name string "Distortion" the name of the mesh component

component__type string "Distortion" type of the mesh component

list_of nodes vector (] MBS node numbers of the component - entries
-1’ or 0’ hint to nodes not actually used in mesh

list_of elements vector R |] MBS element numbers of the component - entries
’-1” or ’0’ hint to elements not actually used in
mesh

Generation

Generation.body index integer 0 the body index / domain number for the entire
mesh component,

364 CHAPTER 3. HOTINT REFERENCE MANUAL
Generation. integer 0 the material number for the entire mesh compo-
material number nent
Generation.Geometri- integer -1 -l..use element defaults, 0..GNS_Linear,
cNonlinearityStatus 1..GNS_ NonlinearSmallStrain,
2..GNS_NonlinearLargeStrain

Graphics

Graphics.RGB __color vector [0, 0, O] [red,green,blue] color of element, range = 0..1, use
default color:[-1,-1,-1]

X string "x" function defining the new x coordinate dependent,
on original (x,y,z) coordinates

fy string Ty function defining the new y coordinate dependent
on original (x,y,z) coordinates

7, string A function defining the new 7z coordinate dependent
on original (x,y,z) coordinates

nX string "o" function defining the new x direction of the orien-
tation vector dependent on original (x,y,z) coor-
dinates

nY string "o" function defining the new y direction of the orien-
tation vector dependent on original (x,y,z) coor-
dinates

nZz string "o" function defining the new z direction of the orien-

tation vector dependent on original (x,y,z) coor-
dinates

3.14.13 Process: Modify

modify a single property for all subordinate components

Data objects of Process: Modify:

’ Data name ‘ type ‘ R ‘ default description

component__name string "Modifier" the name of the mesh component

component_type string "Modifier" type of the mesh component

list_of nodes vector R || MBS node numbers of the component - entries
-1’ or 0’ hint to nodes not actually used in mesh

list_of elements vector R |] MBS element numbers of the component - entries
’-1” or ’0’ hint to elements not actually used in
mesh

Generation

Generation.body index integer 1 the body index / domain number for the entire
mesh component

Generation. integer 1 the material number for the entire mesh compo-

material number nent

Generation.Geometri- integer -1 -l..use element defaults, 0..GNS_Linear,

cNounlinearityStatus 1..GNS_ NonlinearSmallStrain,
2..GNS_NonlinearLargeStrain

Graphics

Graphics.RGB _color vector [0.7, 0.7, 0.7] [red,green,blue] color of element, range = 0..1, use

default color:[-1,-1,-1]

3.14.14 Process: WriterNeutral3D

writes Mesh in neutral 3d format to file

3.14. MESHCOMPONENTS

Data objects of Process: WriterNeutral3D:

365

’ Data name ‘ type ‘ R ‘ default description
component__name string "MeshWriterNeutral3D"
the name of the mesh component
component _type string "MeshWriterNeutral3D"
type of the mesh component
list_of mnodes vector R |] MBS node numbers of the component - entries
-1’ or ’0’ hint to nodes not actually used in mesh
list_of elements vector (] MBS element numbers of the component - entries
-1” or ’0’ hint to elements not actually used in
mesh
Generation
Generation.body index integer 1 the body index / domain number for the entire
mesh component,
Generation. integer 1 the material number for the entire mesh compo-
material number nent
Generation.Geometri- integer -1 -l..use element defaults, 0..GNS_Linear,
cNonlinearityStatus 1..GNS_ NonlinearSmallStrain,
2..GNS_ NonlinearLargeStrain
Generation.target file string " target file for the mesh
Graphics
Graphics.RGB _color vector [0.7, 0.7, 0.7] [red,green,blue] color of element, range = 0..1, use
default color:[-1,-1,-1]
3.14.15 Loader: NetGen2D
reads 2D triangle Mesh from NetGen file *.nf
Data objects of Loader: NetGen2D:
’ Data name ‘ type ‘ R ‘ default description
component__name string "LoaderNetgen2D"
the name of the mesh component
component _type string "LoaderNetgen2D"
type of the mesh component
list_of nodes vector (] MBS node numbers of the component - entries
-1’ or ’0’ hint to nodes not actually used in mesh
list_of elements vector (] MBS element numbers of the component - entries
-1’ or 0’ hint to elements not actually used in
mesh
Source
Source.source_ file string m external source file for the mesh
Source.source nodes integer R |0 number of nodes read from external source file
Source.source _elems integer R |0 number of elements read from external source file
Source.generated nodes integer R |0 number of nodes after domain splitting
BoundaryConditions
BoundaryConditions. integer 0 number of boundary conditions
num-
ber of boundary conditions
BoundaryConditions. matrix R [] mapping of loaded bc to internal set numbers
bcmapping (bcNr, doml, dom2, setNrl, setNr2)
PeriodicBoundaryConditions
PeriodicBoundaryConditionsvector (] identical nodes side 1 (periodic boundary condi-
nodes 1 tions)
PeriodicBoundaryConditionsvector (] identical nodes side 2 (periodic boundary condi-
nodes 2 tions)

366 CHAPTER 3. HOTINT REFERENCE MANUAL

3.14.16 Loader: NetGen3D

reads 3D (purely tetrahedral!) Mesh from NetGen file *.nf
Data objects of Loader: NetGen3D:

’ Data name ‘ type ‘ R ‘ default description
component_name string "LoaderNetgen3D"
the name of the mesh component
component _type string "LoaderNetgen3D"
type of the mesh component
list of nodes vector R |]] MBS node numbers of the component - entries
-1’ or ’0’ hint to nodes not actually used in mesh
list_of elements vector R || MBS element numbers of the component - entries
’-1” or ’0’ hint to elements not actually used in
mesh
Source
Source.source_ file string m external source file for the mesh
Source.source nodes integer R |0 number of nodes read from external source file
Source.source _elems integer R |0 number of elements read from external source file
Source.generated nodes integer R |0 number of nodes after domain splitting
BoundaryConditions
BoundaryConditions. integer 0 number of boundary conditions
num-
ber of boundary conditions
BoundaryConditions. matrix R [] mapping of loaded bc to internal set numbers
becmapping (bcNr, doml, dom2, setNrl, setNr2)
PeriodicBoundaryConditions
PeriodicBoundaryConditionsvector (] identical nodes side 1 (periodic boundary condi-
nodes 1 tions)
PeriodicBoundaryConditionsvector Il identical nodes side 2 (periodic boundary condi-
nodes 2 tions)
3.14.17 Loader: Neutral3D
reads Mesh from file in neutral 3d format
Data objects of Loader: Neutral3D:
’ Data name ‘ type ‘ R ‘ default description
component_name string "MeshLoaderNeutral3D"
the name of the mesh component
component _type string "MeshLoaderNeutral3D"
type of the mesh component
list_of nodes vector R |]] MBS node numbers of the component - entries
-1’ or ’0’ hint to nodes not actually used in mesh
list_of elements vector R || MBS element numbers of the component - entries
’-1” or ’0’ hint to elements not actually used in
mesh
Source
Source.source _ file string m external source file for the mesh
Source.source nodes integer R |0 number of nodes read from external source file
Source.source _elems integer R |0 number of elements read from external source file
Source.generated nodes integer R |0 number of nodes after domain splitting

3.14. MESHCOMPONENTS

367

BoundaryConditions

BoundaryConditions. integer 0 number of boundary conditions

num-

ber of boundary conditi¢ns

BoundaryConditions. matrix R | mapping of loaded bc to internal set numbers
bemapping (bcNr, dom1, dom2, setNrl, setNr2)

PeriodicBoundaryConditions

PeriodicBoundaryConditionjsvector (]

identical nodes side 1 (periodic boundary condi-

nodes 1 tions)
PeriodicBoundaryConditionjsvector (] identical nodes side 2 (periodic boundary condi-
nodes 2 tions)

3.14.18 Loader: STL

reads triangle Mesh from STL file
Data objects of Loader: STL:

’ Data name ‘ type ‘ R ‘ default description

component _name string "LoaderSTL" the name of the mesh component

component _type string "LoaderSTL" type of the mesh component

list_of nodes vector R |] MBS node numbers of the component - entries
-1’ or ’0’ hint to nodes not actually used in mesh

list_of elements vector R |] MBS element numbers of the component - entries
-1” or ’0’ hint to elements not actually used in
mesh

Source

Source.source_ file string m external source file for the mesh

Source.source nodes integer R |0 number of nodes read from external source file

Source.source _elems integer R |0 number of elements read from external source file

Source.generated nodes integer R |0 number of nodes after domain splitting

BoundaryConditions

BoundaryConditions. integer 0 number of boundary conditions

num-

ber of boundary conditions

BoundaryConditions. matrix R [] mapping of loaded bc to internal set numbers

bcmapping (bcNr, doml, dom2, setNrl, setNr2)

PeriodicBoundaryConditions

PeriodicBoundaryConditionjsvector (] identical nodes side 1 (periodic boundary condi-

nodes 1 tions)

PeriodicBoundaryConditionsvector (] identical nodes side 2 (periodic boundary condi-

nodes 2 tions)

3.14.19 Loader: DataArrays

reads Mesh from double* arrays Hexes assumed

Data objects of Loader: DataArrays:

’ Data name ‘ type ‘ R ‘ default description
component__name string "LoaderDataArrays"
the name of the mesh component
component _type string "LoaderDataArrays"
type of the mesh component

368 CHAPTER 3. HOTINT REFERENCE MANUAL

list_of nodes vector (] MBS node numbers of the component - entries
-1’ or 0’ hint to nodes not actually used in mesh

list_of elements vector R |] MBS element numbers of the component - entries
’-1” or ’0’ hint to elements not actually used in
mesh

Domainl

Domainl. string "Domainl" the name of the mesh component

component__name

Domainl. string "DomainContainer"

component _type type of the mesh component

Domainl.list_of nodes vector (] MBS node numbers of the component - entries
-1’ or 0’ hint to nodes not actually used in mesh

Domainl. vector R |] MBS element numbers of the component - entries

list of elements -1’ or ’0’ hint to elements not actually used in
mesh

Domainl.Generation

Domainl.Generation. integer 1 the body index / domain number for the entire

body index mesh component,

Domainl.Generation. integer 1 the material number for the entire mesh compo-

material number nent

Domainl.Generation.Geo- | integer -1 -l.use element defaults, 0..GNS_Linear,

metricNonlinearityStatus 1..GNS_ NonlinearSmallStrain,
2..GNS_ NonlinearLargeStrain

Domainl.Generation. string m node type used to instantiate the component

used node_type

Domainl.Generation. string m element type used to instantiate the component

used elem type

Domainl.Graphics

Domain1.Graphics. vector [0.7, 0.7, 0.7] [red,green,blue] color of element, range = 0..1, use

RGB_ color default color:[-1,-1,-1]

Source

Source.source_file string " external source file for the mesh

Source.source nodes integer R |0 number of nodes read from external source file

Source.source _elems integer R |0 number of elements read from external source file

Source.generated nodes integer R |0 number of nodes after domain splitting

BoundaryConditions

BoundaryConditions. integer 0 number of boundary conditions

num-

ber of boundary conditi¢ns

BoundaryConditions. matrix R | mapping of loaded bc to internal set numbers

bemapping (bcNr, dom1, dom2, setNrl, setNr2)

PeriodicBoundaryConditions

PeriodicBoundaryCondition
nodes 1

Isvector

identical nodes side 1 (periodic boundary condi-
tions)

PeriodicBoundaryCondition
nodes 2

Isvector

identical nodes side 2 (periodic boundary condi-
tions)

3.14. MESHCOMPONENTS 369

3.14.20 Refinement

The MeshComponent MeshRefine implements a 1 to 3 refinement for Quadrilateral and Hexa-
hedral elements. The implementation is based on [19].Ct .

The main advantage of the 1 to 3 refinement is that it can be applied locally without caring
about neighboring elements. Also the algorithm for multiple refinemet steps is simpler.
Pseudocode

e find maximum of all nodes’ subdivision/refinement level. Done if its zero.

e loop over all elements

identify template and orientation for element from node subdivision/refinement levels (uni-
que bitvalue 0..255)

generate all additional nodes

— test for existence with all nodes already generated in this iteration of the algorithm

— assign subdivision /refinement level to new node - general rule: min(neighbors)

generate all additional elements, update first (parent) element

e decrease all subdivision/refinement level by 1

Quadrilateral The refinement of the Quadrilateral requires 6 templates for 16 possible patterns
of marked nodes, the Quadrilateral can be oriented in 4 ways.

0: 1: P‘ 2a: m 2b: | 3: 4:
® [| . o L

Figure 3.78: all possible templates for the Quadrilateral 3-Refinement,[19](Fig 53)

Template Name selected subtype Permutations | Fig imp
none 0 0 1 0 y
corner 1 0 4 1 y
edge 2 0 4 2a, y
diagonal 2 1 2 2b y
3 corners 3 0 4 3 y
all 4 0 1 4 y

370

CHAPTER 3. HOTINT REFERENCE MANUAL

[File View AddObject Edit Delete Object System Computation Results Z

| 1
{Startl i Pause | “Save Hotint Options |F|eload MBSISava MBSI

RPLEGbbH . c@olDa |

| HOTINT

time=

Figure 3.79: HOTINT: all 6 Quadrilateral templates

Hexahedral The refinement of the Hexahedral requires 23 templates for 256 possible patterns
of marked nodes, the Hexahedral can be oriented in 24 ways.

Template Name selected subtype Permutations | Fig imp
none 0 0 1 0 y
corner 1 0 8 1 y
edge 2 0 12 2 y
diagonal 2d 2 1 12 3 n
diagonal 3d 2 2 4 4 n
edge edge 3 0 24 D n
edge diag?2 3 1 24 6 n
diag?2 diag2 3 2 8 7 n
face 4 0 6 8 y
tripod 4 1 8 9 n
left Z 4 2 12 - n
right Z 4 3 12 10 n
anchor 4 4 24 - n
par. edges 4 5 6 - n
twisted 4 6 2 - n
inv(edge edge) 5 0 24 - n
inv(diag 2d) 5 1 24 - n

3.14. MESHCOMPONENTS 371

inv(diag 3d) 5 2 8 - n
inv(edge) 6 0 12 - n
inv(diag 2d) 6 1 12 11 n
inv(diag 3d) 6 2 4 - n
inv(corner) 7 0 8 12 n
all 8 0 1 13 y

The table below lists all 24 possible orientations of the hexahedral (6 faces times 4 orientations
for each edge). The column 'Node Permutation’ lists the node number sequence in this orienta-
tion, the inverse permutation was used to compile a mapping from bitvalues back to template
and orientation. The column 'coordinates’ holds the mapping that is applied to the rotate any
additional node from the orientation 0 position to the correct one for node generation.

Orientation Node Permutation inverse Permutation coordinates

0 1,2,3.4, 5,6,7,8 1,2,3.4, 5,6,7,8 (20,Y0,20)

1 3,1,4,2, 7.5,8,6 2,4,1,3, 6,8,5,7 (Y0,—T0,20)

2 4,321, 8,7,6,5 43,21, 8,7,6,5 (—20,—Y0,2%0)

3 2,4,1,3, 6,8,5,7 3,1,4,2, 7.5,8,6 (—%0,%0,%0)

4 5,6,1,2, 7,8,3.4 3,4,7.8, 1,2,5.6 (0,20,— o)

5 1,5,2,6, 3,7,4.8 1,3,5,7, 2,4,6.,8 (Y0,20,20)

6 2,1,6,5, 4,3.8,7 2,1,6,5, 4,3.8,7 (—20,20,Y0)

7 6,2,5,1, 8,4,7,3 4,2.8.6, 3,1,7,5 (—1o0,20,—T0)

8 7.8.5.6, 3,4,1,2 7.8.5.6, 3,4,1,2 (20, —Yo,—20)

9 5,7,6,8, 1,3,2,4 5,7,6,8, 1,3,2,4 (Y0,20,—20)

10 6,5,8,7, 2,1,4,3 6,5,8,7, 2,1,4,3 (—20,Y0,— 20)

11 8,6,7.5, 4,2,31 8,6,7,5, 4,2,3,1 (=10, —T0,—20)

12 34,78, 1,256 1,5,2,6, 3,7,4.8 (20,—20,Y0)

13 7.3.8,4, 5,1,6,2 6,8,2,4, 5.7,1,3 (Y0,—20,—0)

14 8,7.4,3, 6,5,2,1 8,7.4,3, 6.5,2,1 (—20,—20,— o)

15 4,8,3,7, 2,6,1,5 7.5.3,1, 8,6,4,2 (=10, — 20, T0)

16 2.6,4,8,1,5,3,7 5,1,7.3, 6,2,8.4 (—20,Y0,T0)

17 4,2.8.6, 3,1,7,5 6,2,5,1, 8,4,7,3 (—20,—20,Yo)

18 8,4,6,2, 7,3,5,1 8,4,6,2, 7.3,5,1 (—20,—Yo,—To)

19 6,8,2.4, 5,7,1,3 7.3,8,4, 5,1,6,2 (—20,20,— o)

20 51,73, 6,2,8.4 2,6,4,8,1,5,3,7 (20,90, —T0)

21 7,5,3,1, 8,6,4,2 4,8,3,7,2,6,1,5 (20,—20,—Yo)

22 3,7.1,5, 4,8,2,6 3,7,1,5, 4.8,2.6 (20,—Y0,T0)

23 1,3,5,7, 2,4,6,8 1,5,2,6, 3,7,4.8 (20,205Y0)
3.14.21 MeshElements

These mesh elements are available:

o MeshHex

372 CHAPTER 3. HOTINT REFERENCE MANUAL

File View AddObject Edit Delete Object System Computation Results 7 -
i Startl i Pauze |'Save Hatint Options |F|eload MBSISave MBSI N p s = [:} o ':*f & @ e 12 E |
| HOTINT

time= 0s

Figure 3.80: HOTINT: 2 stage refinement of Quadrilateral

For the Mesh objects only the elements do only require rudimentary data to be useful for Mesh
generation. The goal is to use as little memory space as possible.

The only strictly necessary data for the element is the list of nodes, the other properties can
be obtained by functions if derived classes are used. Note that the list of nodes is a mere list
of node numbers, not the actual For faster processing the element type and material are also
data members.

Using derived classes it is also possible to implement certain functions for specific types of
elements.

The main methods available for a mesh element are:

e ComputeGlobPos(locpos) - computes the global coordinate system position for a given local
position in element coordinates. List of Node coordinates as additional input.

e ComputeLocPos() - computes the local coordinate system position for a given global position.
e Invert() - Element can reorientate itself consistently after a Mirror operation

e IntermediateNodes - Element has a list of additional nodes for the linear to quadratic con-
version

e Refine - Element has list of refinement templates (many several functions).

3.14. MESHCOMPONENTS 373

1 2 4
¥
/ |
5 ~ 6 7
> P
Le
8 9 10
ol /j
o S S
11 12 13
- . | - = | - . |
e
7
11
/J'

Figure 3.81: some possible templates for the Hexahedral 3-Refinement,[19](Fig 57)

374 CHAPTER 3. HOTINT REFERENCE MANUAL

~ File View AddObject Edit DeleteObject System Computation Results 2

Start! | Pauze |'Save Hotint Options I§'é'l'6'é'a"i§;'i'l§'3|83ve MBSI N p I'_: I:- |:: 5132 ':*: e E en 1] [2] 3] |
[HOTINT '

time= 0s

Figure 3.82: HOTINT: Hexahedral Refinement "‘edge"’ in orientaiton 0

3.15. COMMAND 375

3.15 Command

These commands are available:

e AddElement,

e AddGeomElement,

e AssignGeomElementToElement,
e AddConnector,

e AddLoad,

e AddSensor,

e AddSensorProcessor,
e AddMaterial,

e AddBeamProperties, [3.15.9
e AddNode, [3.15.10

e Include, [3.15.11

e Print, 5.15.12

e Printlf, 3.15.13
e ReadSTLFile, |3.15.14

e RotMat2Angles, [3.15.15
e LoadVectorFromFile, [3.15.16
e TransformPoints, |3.15.17

e Computelnertia, [3.15.18

e Sum, [3.15.19

e Product,

e Transpose, |3.15.21

e CrossProduct,

o for,

o if,

o GenerateNewMesh,

e GenerateBeam, [3.15.26
e GeneratePlate, [3.15.27

376 CHAPTER 3. HOTINT REFERENCE MANUAL

GenerateBlock,

e GenerateCylinder, |3.15.29
e LoadMesh, [3.15.30]

e WriteMesh,

e Transform, [3.15.32

e Distort, [3.15.33]

o Modify, [3.15.34
e Linear2Quadratic, [3.15.35

e SplitHexes, [3.15.36

e Refine, |3.15.37

e Rotate, [3.15.3§

e Mirror, [3.15.39

e Extrude, |3.15.40

e AddMeshToMBS,

e GetNodesInBox, [3.15.42

o GetNodesInCylinder, [3.15.43
e GetNodesInSphere,

e GetNodesInFunction, [3.15.45

e GetNodePos,

e GetFacesFromNodes,

e GlueMesh, [3.15.4§|

e GetLocalPosOfGlobalPos, |3.15.49

e GetElementsInBox,

e GetElementAtPosition, [3.15.51]
e GenerateNewPlot, [3.15.52]

e ExportToFile, [3.15.53

e Close, [3.15.54]

e DoesEntryExist, [3.15.59]

e GetByName, [3.15.50]

3.15. COMMAND 377
e SetByName, [3.15.57

e Compare, [3.15.58

o StrCat,

e Zeros, [3.15.60

e IntArrayOp,

e Timer, [3.15.62]

e AddSet, [3.15.63|

o AccessSet,

e GenerateConstraints, |3.15.65

e GenerateSensors, [3.15.66

e AssignMaterial, [3.15.67
e AssignlLoad, [3.15.68

e ChangeProperties, [3.15.69

e SetlnitialCondition, |3.15.70

e OpenCompiledModel, |3.15.71

3.15.1 AddElement

Adds an element to the system. See the description of the elements above in order to get the
available options.

Parameters:

The parameter of this command is an ElementDataContainer with the data of the element.
ATTENTION: the entry element type must exist!

return values:

The return value of this command is the number of the element in the MBS.

Example

see file AddElement.txt

emptyMass3D

{
element_type = "Mass3D"
Physics.mass= 1

}

nElement = AddElement (emptyMass3D)

378 CHAPTER 3. HOTINT REFERENCE MANUAL

3.15.2 AddGeomElement

This command adds an geometric element.

Parameters:

The parameter of this command is an ElementDataContainer with the data of the geometric
element. ATTENTION: the entry geom element type must exist!

return values:

The return value of this command is the number of the geometric element in the MBS.

Example

see file AddGeomElement.txt

myCube

{
name= "myGeomElement"
geom_element_type = "GeomOrthoCube3D"
Geometry.center_point= [0.0, 0.0, 0.0]
Geometry.size= [1.0, 1.0, 1.0]

}
AddGeomElement (myCube)

3.15.3 AssignGeomElementToElement

This command assigns a geom element to an element. The reference point and rotation of the
element are evaluated and the settings of the geom element are modified automatically, such
that the current relative orientation of element and geom element keeps the same. You can
therefore add and align the geom element independently from the element first and afterwards
decide to connect the geom element to the element without the need of changing the settings
of the geom element again.

Parameters:

The parameters of this command are

1. 1% parameter: an element number

2. 2™ parameter: a geom element number

return values:
returns 0 or an error code

Example

see file AssignGeomElementToElement.txt

red = [1,0,0] % colour for "relative" (geom) elements
blue = [0,0,1] % colour for "absolute" (geom) elements

geomElement % define and add some geom element

{

3.15. COMMAND 379

name = "absolute geom Element"
geom_element_type = "GeomCylinder3D"
Geometry.radius= 0.1 % radius of the cylinder
Geometry.axis_pointl= [1, 1, O] % point on axis of rotation
Geometry.axis_point2= [1.5, 1, 0] % point on axis of rotation
Graphics.RGB_color=blue

}

nGeomEl_absolute = AddGeomElement (geomElement)

% the geomElement is added to the mbs with global positions

geomElement .Graphics.RGB_color=red

geomElement .name = "relative geom Element"

geomElement .Geometry.axis_pointl= [0, O, 0] % point on axis of rotation
geomElement .Geometry.axis_point2= [0.5, 0, 0] 7 point on axis of rotation
nGeomEl_relative = AddGeomElement (geomElement)

% the geomElement is added a second time to the mbs with different

% global positions and color

elementRelative
{
name = "relative element"
element_type= "Rigid3DMinCoord"
Graphics.use_alternative_shape = 1
Graphics.geom_elements = [nGeomEl_relative]
Graphics.position_offset = [1,0,0]
Graphics.RGB_color=red
by
nERel = AddElement(elementRelative)
% the geomElement "relative" is linked to the element "relative" at the time when the
% element is added to the mbs
% the coordinates of the geomElement are now relative to the reference point of the element
% the element "relative" is not visible, only the geomElement is visible

elementAbsolute
{
name = "absolute element"
element_type= "Rigid3DMinCoord"
Graphics.position_offset = [1,1,0]
Graphics.RGB_color=blue
by
nEAbs = AddElement (elementAbsolute)
% the geomElement "absolute" and the element "absolute" are both visible in mbs
% you can check the alignment

AssignGeomElementToElement (nEAbs,nGeomEl_absolute)

% the element "absolute" vanishes but the geomElement "absolute" stays at the same place
% the settings of the geomElement were adjusted automatically

% the element "absolute" is linked with the geomElement "absolute"

380 CHAPTER 3. HOTINT REFERENCE MANUAL

3.15.4 AddConnector

Adds a connector to the system. See the description of the connectors above in order to get
the available options.

Parameters:

The parameter of this command is an ElementDataContainer with the data of the connector.
ATTENTION: the entry element type must exist!

return values:

The return value of this command is the number of the connector in the MBS.

Example

see file AddConnector.txt

RigidBody % define some element
{
element_type "Rigid3D"
Physics.mass = 1
Graphics.Body_dimensions = [0.1,1,0.1]
by
nElement =AddElement (RigidBody)

myConnector
{
element_type = "PointJoint"
Physics
{
use_penalty_formulation = 0O
Lagrange
{
constrained_directions = [1,1,1]
}
b
Positionl
{
element_number = nElement
position = [0,-0.5,0]
by
Position2
{
element_number = 0 % = 0 -> global node/coordinate
position = [0,0,0] % position of ground
}
Graphics.draw_size = 0.05
}

nConnector = AddConnector (myConnector)

3.15. COMMAND 381

3.15.5 AddLoad

Adds a load to the system. See the description of the loads above in order to get the available
options. You have to adjust the value 'loads’ in the element to assign the load to the element.
Parameters:

The parameter of this command is an ElementDataContainer with the data of the load. AT-
TENTION: the entry load type must exist!

return values:

The return value of this command is the number of the load in the MBS.

Example

see file AddLoad.txt

myLoad % define the load
{
load_type = "Gravity"
name = "gravity for all elements"
direction = 2
gravity_constant = 9.81
}
nLoad=AddLoad (myLoad)

emptyMass3D % define some element
{
element_type = "Mass3D"
Physics.mass= 1
loads = [nLoad] % add the load to the element
}
nElement = AddElement (emptyMass3D)

ViewingOptions.Loads.show_loads = 1
ViewingOptions.Loads.arrow_size

]
(@}
N

3.15.6 AddSensor

Adds a sensor to the system. See the description of the sensors above in order to get the avai-
lable options.

Parameters:

The parameter of this command is an ElementDataContainer with the data of the sensor. AT-
TENTION: the entry sensor type must exist!

return values:

The return value of this command is the number of the sensor in the MBS.

Example

see file AddSensor.txt

emptyMass3D ¥, define some element

382 CHAPTER 3. HOTINT REFERENCE MANUAL

{
element_type = "Mass3D"
Physics.mass= 1

}

nElement = AddElement (emptyMass3D)

mySensor

{
sensor_type = "FVElementSensor"
name = "Position of the Mass3D in z-direction"
element_number = nElement
field_variable = "position"
component = "z"

by

nSensor = AddSensor (mySensor)

ViewingOptions.Sensors.show_sensors = 1

3.15.7 AddSensorProcessor

Adds a sensorProcessor to an existing. See the description of the sensorProcessors above in
order to get the available options.

Parameters:

The 1st parameter of this command is an ElementDataContainer with the data of the sensor
followed by the index number of the sensor to add to as 2nd parameter. ATTENTION: the
entry processor_type must exist!

return values:

The return value of this command is the number of the sensor in the MBS.

Example
see file AddSensorProcessor.txt

emptyMass3D 7, define some element

{
element_type = "Mass3D"
Physics.mass= 1

}

nElement = AddElement (emptyMass3D)

mySensor

{
sensor_type = "FVElementSensor"
name = "Position of the Mass3D in z-direction"
element_number = nElement
field_variable = "position"
component = "z"

}

nSensor = AddSensor (mySensor)

3.15. COMMAND 383

myProcessor

{
processor_type
scaling_factor
offset = 0.0

}

AddSensorProcessor (myProcessor,nSensor)

"OffsetScaleSensorProcessor"
-1.0

ViewingOptions.Sensors.show_sensors = 1

3.15.8 AddMaterial

Adds a material to the system. See the description of the materials above in order to get the
available options.

Parameters:

The parameter of this command is an ElementDataContainer with the data of the material.
ATTENTION: the entry material type must exist!

return values:

The return value of this command is the number of the material in the MBS.

Example

see file AddMaterial.txt

Materialil
{

material_type= "Material"
Solid
{
density= 7850 ¥ density (rho) for gravitational force
youngs_modulus= 2.1lell %Youngs modulus
poisson_ratio= 0.3 YPoisson ratio
}
}
AddMaterial (Materiall)

3.15.9 AddBeamProperties

Adds a BeamProperty to the system. See the description of the BeamProperties above in order
to get the available options.

Parameters:

The parameter of this command is an ElementDataContainer with the data of the BeamPro-
perties. ATTENTION: the entry material type must exist!

return values:

The return value of this command is the number of the node in the MBS.

384

Example

see file AddBeamProperties.txt

beaml

{

material_type = "Beam3DProperties"

cross_section_size = [0.1,0.1]
EA = 2e9

Ely = 2e6
EIz = 2e6
GJkx = 2e6

}
AddBeamProperties(beaml)

3.15.10 AddNode

CHAPTER 3. HOTINT REFERENCE MANUAL

Adds a node to the system. See the description of the nodes above in order to get the available

options.
Parameters:

The parameter of this command is an ElementDataContainer with the data of the node. AT-
TENTION: the entry node type must exist!

return values:

The return value of this command is the number of the node in the MBS.

Example

see file AddNode.txt

nodel

{
node_type = "Node3DSlrotl"

}
AddNode(nodel)

ViewingOptions.FiniteElements.Nodes.show = 1
ViewingOptions.FiniteElements.Nodes.node_size = 0.05

3.15.11 Include

This command includes a file.
Parameters:

The parameter of this command is the absolut or relative filename. If a relative filename is
used, then the path is relative to the last file! Be carefull, if you use this command more than

one time in a file.
return values:
There is no return value defined yet.

3.15. COMMAND 385

Example

see file Include.txt

%#Include("D:\HelloWorld.txt") % absolute file path
Include("..\..\examples\double_pendulum.txt") % relative path 1
%Include("AddElement.txt") % relative path 2 (same folder)

3.15.12 Print

Prints a text to the output window
Parameters:
There are three possibilities to use the command. The parameter can either be:

e a text, e.g. Print("Hello world")
e an ElementDataContainer, e.g. Print(my mass)
e an ElementData, e.g. Print(my mass.density)

In the case of a text or an ElementData, only the text itself is printed. In the case of an
ElementDataContainer, also the name of the ElementData is printed.

return values:

There is no return value for this command

Example

see file Print.txt

Print ("Hello world! \a")

TestEDC
{
number = 1
text = "this is a text in an edc"
}
Print ("\nPrinting the edc:\n")
Print (TestEDC)
Print ("\n")
Print ("Printing elements of the edc: \n")
Print(TestEDC.text)
Print ("\n")
Print (TestEDC.number)
Print ("\n")

PrintIf(true,"It’s true\n")
PrintIf(TestEDC.number,"TestEDC.number=1\n")

386 CHAPTER 3. HOTINT REFERENCE MANUAL

3.15.13 Printlf

additional boolean, Prints a text to the output window

Parameters:

First parameter is a flag whether to print at all. There are three possibilities to use the com-
mand. The 2nd parameter can either be:

e a text, e.g. Print("Hello world")
e an ElementDataContainer, e.g. Print(my mass)
e an ElementData, e.g. Print(my mass.density)

In the case of a text or an ElementData, only the text itself is printed. In the case of an
ElementDataContainer, also the name of the ElementData is printed.

return values:

There is no return value for this command

Example

see file Print.txt

Print("Hello world! \n")

TestEDC
{
number = 1
text = "this is a text in an edc"
}
Print ("\nPrinting the edc:\n")
Print (TestEDC)
Print("\n")
Print ("Printing elements of the edc: \n")
Print (TestEDC.text)
Print ("\n")
Print (TestEDC.number)
Print ("\n")

PrintIf(true,"It’s true\n")
PrintIf(TestEDC.number,"TestEDC.number=1\n")

3.15.14 ReadSTLFile

This command reads a stl-mesh from a file and stores the data in an ElementDataContainer.
Parameters:

The parameter of this command is the absolut or relative filename.

return values:

The return value is an ElementDataContainer with 2 entries: triangles and points.

3.15. COMMAND 387

Example

see file ReadSTLFile.txt

STL = ReadSTLFile("mesh.stl")

myGeomElementMesh3D

{
geom_element_type = "GeomMesh3D"
% MeshData = STL % not possible yet
MeshData.triangles = STL.triangles
MeshData.points = STL.points

b
nGeoml = AddGeomElement (myGeomElementMesh3D)

3.15.15 RotMat2Angles

For a given rotation matrix the Euler Angles Z-X-Z and Kardan Angles are computed
Parameters:
The parameters of this command are as follows

1. rotationatrix

return values:
The return value is a set Vector3D containing the angles [rad].

Example

see file RotMat2Angles.txt

a = 45 * PI/180 % convert to rad
rotZ = [cos(a), -sin(a), 0; sin(a), cos(a), 0; 0, 0, 1]
anglesl = RotMat2Angles(rotZ)

%% expect: anglesl.EulerZXZ = [a 0 O]
%% expect: anglesl.Kardan = [0 O a] =

= [0.7853981633974483 0 0]
[0 0 0.7853981633974483]

b = 1/sqrt(2)

rotY = [b,0,b; 0,1,0; -b,0,b]

angles2 = RotMat2Angles(rotY)

%% expect: angles2.EulerZXZ = [pi/2, pi/4, -pi/2]
%% expect: angles2.Kardan = [0 0 a] = [0 pi/4 0]

3.15.16 LoadVectorFromFile

This command reads a vector from a file and returns this vector.
Parameters:
The parameters of this command are

1. The name of the file as string

2. An integer defining in which column (default) or row of the file the vector is stored

388 CHAPTER 3. HOTINT REFERENCE MANUAL

3. (optional) 0.. take the column (default), 1.. take the row

return values:
The return value is the vector.

Example

see file LoadVectorFromFile.txt

%========== basic exa_mple
t = LoadVectorFromFile("solution.txt",1) 7% relative path
% x = LoadVectorFromFile("D:\sol.txt",2) 7% absolute also possible

x = LoadVectorFromFile("solution.txt",2)
x7 = x[7] % direct access to element of vector

% use loaded vectors to define a MathFunction
Time.element_type= "I0Time"
nTime = AddElement(Time) % time as input for the Mathfunction

Mathf
{
element_type= "IOMathFunction"
Graphics.position= [100, 0]
I0Block
{
input_element_numbers= [nTime]
input_element_types= [1] % vector with types of connected inputs; 1=I0Element
input_local_number= [1] % i-th number of output of previous IOelement
MathFunction
{
piecewise_mode= 1 ¥ modus for piecewise interpolation: 1=linear
piecewise_points= t ¥ supporting points for piecewise interpolation
piecewise_values= x % values at supporting points
}
b
by
nMF = AddElement (Mathf)

% sensor to measure the output of the mathfunction
sensor.sensor_type= "ElementSensor"
sensor.element_number= nMF

sensor.value= "IOBlock.output[1]"

AddSensor (sensor)

3.15.17 TransformPoints

With this command, the geometry described by the points can be transformed. It is possible
to apply rotation and/or translation and/or scaling. The new point pN is computed according
to the formula pN = trans -+ rot™p.

3.15. COMMAND 389

Parameters:
The parameters of this command are as follows

1. points: Matrix of the points: Each line represents a point p. The 3 columns are the x-, y-
and z-coordinate

2. trans: Vector of translation, 3 dimensions!

3. rot: rotation matrix (3x3), can be used for scaling as well as rotation

return values:
The return value is a Matrix containing the transformed points pN.

Example
see file TransformPoints.txt

STL = ReadSTLFile("mesh.stl") % load mesh

% add geomElement with original points

myGeomElementMesh3D

{
geom_element_type = "GeomMesh3D"
MeshData.triangles = STL.triangles
MeshData.points = STL.points
Graphics.RGB_color = [0.2,0.2,0.8]

}

nGeoml = AddGeomElement (myGeomElementMesh3D)

% transform points

vec = [0,50,0] % translation

A =[0.75,0,0;0,0.75,0;0,0,0.75] % scaling
points=TransformPoints(STL.points,vec,A)

% add geomElement with transformed points
myGeomElementMesh3D.MeshData.points = points
myGeomElementMesh3D.Graphics.RGB_color = [0.2,0.8,0.2]
nGeom2 = AddGeomElement (myGeomElementMesh3D)

3.15.18 Computelnertia

This command computes the mass, moment of inertia, volume and center of mass based on the
information about the geometry and the material of a body

Parameters:

The parameter of this command is an ElementDataContainer, with the following entries:

e density or material number (one of these 2 has to be set!)
e One of the following options to define the geometry:

— MeshData.triangles and MeshData.points
both entries are Matrices with 3 columns

390 CHAPTER 3. HOTINT REFERENCE MANUAL

— Cube.body dimensions

return values:
The return value is an ElementDataContainer with 4 entries: volume, mass, moment_of inertia
and center of mass

Example
see file Computelnertia.txt

% simple example with a cube
my_data
{
density = 7850
Cube.body_dimensions = [1.0,0.1,0.1]

}
CI1 = ComputelInertia(my_data)
Print(CI1)

% example with a mesh

STL = ReadSTLFile("mesh.stl")
Materiall

{

material_type= "Material"
Solid.density= 7850
by
n = AddMaterial (Materiall)

my_data2
{

material_number = n
MeshData
{
triangles = STL.triangles
points = STL.points
b

}
CI2 = ComputelInertia(my_data2)

Print (CI2)

3.15.19 Sum

This command adds two components of the same type (scalar, vector or matrix).
Parameters:
The parameters of this command are

1. 1% summand, either scalar, vector or matrix

2. 2" summand, either scalar, vector or matrix

3.15. COMMAND 391

return values:
The return value is the sum of the two inputs.

Example

see file Sum.txt

Scalar = 1.5

Vector2D = [1,2]

Matrix2D = [0,1;2,0]

s = Sum(Scalar,Scalar) % 3

v = Sum(Vector2D,Vector2D) % [2,4]

m = Sum(Matrix2D,Matrix2D) % [0,2;4,0]

3.15.20 Product

This command multiplies two components of the type (scalar, vector or matrix) when the
operation is defined.

Parameters:

The parameters of this command are

1. 1% factor, either scalar, vector or matrix
2. 2" factor, either scalar, vector or matrix

product of two vectors is always computed as scalar product for vector times Matrix the vector
is automatically transposed if required -

return values:

The return value is the product of the two inputs.

Example
see file Product2.txt
Scalar = 1.5

Vector2D = [1,2]
Matrix2D = [0,1;2,0]

sl = Product(Scalar,Scalar) % 2.25
vl = Product(Scalar,Vector2D) % [1.5,3]
ml = Product(Scalar,Matrix2D) % [0,1.5;3,0]

82 = Product(Vector2D,Vector2D)
v2 = Product(Vector2D,Scalar)
m2 = Product(Matrix2D,Scalar) % [0,1.5;3,0]

392 CHAPTER 3. HOTINT REFERENCE MANUAL

3.15.21 Transpose

This command transposes a matrix or vector.
Parameters:
The parameters of this command are

1. vector or matrix to be transposed

return values:
The return value is a matrix or a vector.

Example

see file Transpose.txt

Vector2D = [1,2]
a = Transpose(Vector2D) % [1;2]
b = Transpose(a) 5 [1,2]

3.15.22 CrossProduct

This command computes the cross product of two vectors.
Parameters:
The parameters of this command are

1. 1°* vector (2D or 3D)
2. 2™ vector (2D or 3D)

for two 3D vectors the retuen value is also a 3D vector. For two 2D vectors the return value is
a scalar. -

return values:

The return value is the scalar cross product.

Example

see file CrossProduct.txt

vi = [1,2,3]
v2 = [2,3,4]
C1 = CrossProduct(vl,v2) h[-1, 2,-1]
C2 = CrossProduct(v2,vl) % [1,-2, 1]

3.15.23 for

This command starts a FOR loop for the subsequent block.
Parameters:
The parameters of this command are

1. 1% define and initialize loop variable ("i=1")

3.15. COMMAND 393
2. 2" Joop condition ("i<5")
3. 3" loop increment ("i=i+1")

the command must be followed by a container for the loop code -
return values:
The return value is the number of iterations.

Example

see file LoopCond.txt

%% Test 1
Testl % general function and tree correctness
{
sum = 0
for(i=1,i<11,i=i+1)
{
sum = sum + i
}
Print("Testl: ")
Print (sum)
Print (" (55)\n")
if (sum==55)
{
Print ("TEST 1 PASSED \n")
}
}

%% Test2 % nesting loops
%Test2
YAl
for(i=1,1i<5,i=1+1)
{
for(j=1,j<5,j=j+1)
{
Mass3D
{
element_type = "Mass3D"
Physics.mass= 1
Initialization.initial_position= [i,j, O]
Graphics.RGB_color = [1,1,1]
}
if (i==j)
{
if (i==1)
{
Mass3D.Graphics.RGB_color = [0,0,0]
}
if (i==2)

394 CHAPTER 3. HOTINT REFERENCE MANUAL

{
Mass3D.Graphics.RGB_color = [1,0,0]
}
if (i==3)
{
Mass3D.Graphics.RGB_color = [0,1,0]
}
if (i==4)
{
Mass3D.Graphics.RGB_color = [0,0,1]
}
}
elnr = AddElement (Mass3D)
Print ("Added Element ")
Print (elnr)
Print (" to MBS\n'")
}
}
ht

3.15.24 if

This command evaluates an IF condition for the subsequent block.
Parameters:
The parameters of this command are

1. 1°* condition ("i<10")

the command must be followed by a container for the conditional code -
return values:
The return value is the 1 for true and 0 for false.

Example

see file LoopCond.txt

%h Test 1
Testl % general function and tree correctness
{
sum = O
for(i=1,i<11,i=i+1)
{
sum = sum + i
}
Print("Testl: ")
Print (sum)
Print(" (55)\n")
if (sum==55)
{
Print ("TEST 1 PASSED \n")
}

3.15. COMMAND 395

3

%% Test2 % nesting loops
%Test?2
AL
for(i=1,1i<5,i=i+1)
{
for(j=1,j<5,j=j+1)
{
Mass3D
{
element_type = "Mass3D"
Physics.mass= 1
Initialization.initial_position= [i,j, O]
Graphics.RGB_color = [1,1,1]
}
if (i==j)
{
if (i==1)
{
Mass3D.Graphics.RGB_color = [0,0,0]
}
if (i==2)
{
Mass3D.Graphics.RGB_color
}

[1,0,0]

if (i==3)
{
Mass3D.Graphics.RGB_color

}

[0,1,0]

if(i==4)
{
Mass3D.Graphics.RGB_color

}

(0,0,1]

}
elnr = AddElement (Mass3D)
Print ("Added Element ")
Print (elnr)
Print (" to MBS\n")
¥
}
ht

3.15.25 GenerateNewMesh

This command generates a Handle to a Mesh Object for further operations.
Parameters:
The parameters of this command are

1. 1% parameter EDC to overwrite the default properties

the return vaule of the command MUST be assigned to a new variable(handle)

396 CHAPTER 3. HOTINT REFERENCE MANUAL
overwritable enties in the properties EDC are:

e mesh name

e mesh_type: may be StructuralMesh (default) or SolidMesh

e compute surface: set to 1 to automatically compute surface of the mesh

return values:
The return value is a special EDC (Handle) that must be assigned to a new variable.

Example

see file MeshGenerateMesh.txt

meshparameters

{
mesh_type = "StructuralMesh"
mesh_name = "Meshl"

by

Meshl = GenerateNewMesh(meshparameters)
Mesh1.AddMeshToMBS (1)

meshparameters

{
mesh_type = "SolidMesh"
mesh_name = "Mesh2"

}

Mesh2 = GenerateNewMesh(meshparameters)
Mesh2.AddMeshToMBS (1)

3.15.26 GenerateBeam

This command generates a Beam within a Mesh Object.
Parameters:
The parameters of this command are

1. 1% parameter EDC containing the beam properties
enties in the properties EDC are:

e component name

e component_type: Linear(default)

Generation.P1 - position of left outer node

Generation.P2 - position of right outer node

Generation.material number - number of the material to be used for the beam elements
(Beam3DProperties)

3.15. COMMAND 397
e (Generation.discretization - number of the beam elements

e Generation.GeometricNonlinearityStatus - gnls of the generated elements

return values:
The return value is the component number of the newly generated beam within the mesh.

Example

see file MeshGenerateBeam.txt

meshparameters
{
mesh_type = "StructuralMesh"
mesh_name = "Meshl"
}
Meshl = GenerateNewMesh (meshparameters)
beamproperties
{
material_type = "Beam3DProperties"
cross_section_size = [0.1,0.1]
EA = 2e9
Ely = 2e6
EIz = 2e6
GJkx = 2e6
}
mnr_beam = AddBeamProperties(beamproperties)
beamparameters
{
Generation.P1 = [0. 0. 0.]
Generation.P2 = [1. 2. 3.]

Generation.material_number = mnr_beam
Generation.discretization = 4

3

Meshl.GenerateBeam(beamparameters)

Mesh1.AddMeshToMBS (1)

3.15.27 GeneratePlate

This command generates a Plate within a Mesh Object.
Parameters:
The parameters of this command are

1. 1% parameter EDC containing the plate properties

enties in the properties EDC are:

398 CHAPTER 3. HOTINT REFERENCE MANUAL

component name

component__type: Quadrilateral(default)

Generation.P1 - position of first node

Generation.P2 - position of outer node along first direction

Generation.P3 - position of outer node along second direction

Generation.P4 - position of node opposite to the first node

Generation.material _number - number of the material to be used for the plate elements

Generation.discretization - number of the plate elements both directions - enter as 2-component
ector

Generation.thickness - thickness for the plate elements

Generation.GeometricNonlinearityStatus - gnls of the generated elements

return values:
The return value is the component number of the newly generated plate within the mesh.

Example

see file MeshGeneratePlate.txt

meshparameters

{

3

mesh_type = "StructuralMesh"
mesh_name = "Meshl"

Meshl = GenerateNewMesh(meshparameters)

platematerial

{

material_type = "Material"
Solid.density = 7850
Solid.youngs_modulus = 2.1lell
Solid.poisson_ratio = 0.3
Solid.plane = yes
Solid.plane_stress = yes

}
mnr_plate = AddMaterial(platematerial)
plateparameters
{
component_name = "tile_1"

Generation.P1 =
Generation.P2
Generation.P3

., 0
., O.
0

*

N O Ol

[o.
L 2.,
Lo

*

| NN Iy N oy N |

3.15. COMMAND 399

Generation.P4 = [2., 2., 0.]
Generation.material _number = mnr_plate
Generation.discretization = [2,2]
Generation.thickness = 0.1

3

Meshl.GeneratePlate (plateparameters)

Meshi.AddMeshToMBS (1)

3.15.28 GenerateBlock

This command generates a Block within a Mesh Object.
Parameters:
The parameters of this command are

1. 1% parameter EDC containing the block properties
entries in the properties EDC are:
e component name

e component_type: Block(default)

Generation.P1 .. P8 - position of corner nodes

Generation.material number - number of the material

Generation.discretization - number of the block elements all three directions

e Generation.GeometricNonlinearityStatus - gnls of the generated elements

return values:
The return value is the component number of the newly generated block within the mesh.

Example

see file MeshGenerateBlock.txt

meshparameters

{
mesh_type = "SolidMesh"
mesh_name "Mesh2"

}

Mesh2 = GenerateNewMesh(meshparameters)

blockmaterial

{
material_type = "Material"
Solid.density = 7850
Solid.youngs_modulus = 2.1ell
Solid.poisson_ratio = 0.3

400 CHAPTER 3. HOTINT REFERENCE MANUAL

mnr_block = AddMaterial(blockmaterial)

blockparameters
{
component_name = "TwoCubed"
component_type = "Block"
Generation
{
P1 = [-1.,-1.,-1.]
P2 = [1.,-1.,-1.]
P3 = [-1., 1.,-1.]
P4 =1[1.,1.,-1.]
P5 = [-1.,-1., 1.]
P6 = [1.,-1., 1.]
P7 = [-1., 1., 1.]
P8 =[1.,1., 1.]
}

Generation.Material_number = mnr_block
Generation.discretization = [2,2,2]

}

Mesh?2.GenerateBlock(blockparameters)

Mesh?2.AddMeshToMBS (1)

3.15.29 GenerateCylinder

This command generates a Cylinder within a Mesh Object.
Parameters:
The parameters of this command are

1. 1% parameter EDC containing the cylinder properties

it is assumed that the cylinder rotates around the z-axis the y component for all points should
be 0.0 entries in the properties EDC are:

e component name

e component_type: Cylinder(default)

e Generation.P1 - inner point of the base

e Generation.P2 - outer point of the base

e Generation.P3 - inner point of the top

e Generation.P4 - outer point of the top

e Generation.material number - number of the material

e Generation.discretization - number of the cylinder elements in radial, tangential and axial
direction.

e Generation.GeometricNonlinearityStatus - gnls of the generated elements

3.15. COMMAND

return values:

401

The return value is the component number of the newly generated cylinder within the mesh.

Example

see file MeshGenerateCylinder.txt

meshparameters

{

"SolidMesh"
"Mesh2"

mesh_type
mesh_name

}

Mesh2 = GenerateNewMesh(meshparameters)

blockmaterial

{
material_type = "Material"
Solid.density = 7850
Solid.youngs_modulus = 2.1ell
Solid.poisson_ratio = 0.3

}
mnr_block = AddMaterial(blockmaterial)
cylinderparameters
{
component_name = "FullCylinder"
component_type = "Cylinder"
Generation
{
P1 = [0.0,0.0,0.0]

P2 = [1.0,0.0,-.1]
P3 = [0.0,0.0,0.8]
P4 = [0.8,0.0,0.7]

T
Generation.Material_number = mnr_block
Generation.discretization = [2,2,2]

b
Mesh2.GenerateCylinder(cylinderparameters)
cylinderparameters
{
component_name = "HollowCylinder"
Generation
{
P1 = [0.8,0.0,2.0]
P2 = [1.1,0.0,2.0]
P3 = [0.8,0.0,3.0]
P4 = [1.2,0.0,3.0]

402 CHAPTER 3. HOTINT REFERENCE MANUAL

3

Mesh2.GenerateCylinder(cylinderparameters)

Mesh2.AddMeshToMBS (1)

3.15.30 LoadMesh

This command loads a mesh from an external file into a Mesh Object.
Parameters:
The parameters of this command are

1. 1% operation code defining the file format

2. 2™ filename of the file containing the mesh

currently implemented file formats and thus allowed values for the 1% parameter are
e Neutral3D

e Netgen2D

e STL

return values:
The return value is the component number of the newly generated component containing the
external mesh.

Example

see file MeshLoadMesh.txt

meshparameters

{
mesh_type = "SolidMesh"
mesh_name "Mesh2"

}

Mesh2 = GenerateNewMesh (meshparameters)

blockmaterial

{
material_type = "Material"
Solid.density = 7850
Solid.youngs_modulus = 2.1ell
Solid.poisson_ratio = 0.3

}

mnr_block = AddMaterial(blockmaterial)

Mesh2.LoadMesh("Neutral3D","blox.txt")

Mesh2.AddMeshToMBS (1)

3.15. COMMAND 403

3.15.31 WriteMesh

This command loads a mesh from an external file into a Mesh Object.
Parameters:
The parameters of this command are

1. 1% component number or zero for all

2. 2" operation code defining the file format

3. 3" filename of the file containing the mesh

currently implemented file formats and thus allowed values for the 1% parameter are

e Neutral3D

return values:
The return value is the component number of the newly generated component containing the
external mesh.

Example

see file MeshLoadMesh.txt

meshparameters
{
mesh_type = "SolidMesh"
mesh_name = "Mesh2"
}
Mesh2 = GenerateNewMesh(meshparameters)
blockmaterial
{
material_type = "Material"
Solid.density = 7850

Solid.youngs_modulus = 2.1lell
Solid.poisson_ratio = 0.3

¥
mnr_block = AddMaterial(blockmaterial)

Mesh2.LoadMesh("Neutral3D","blox.txt")

Mesh?2.AddMeshToMBS (1)

3.15.32 Transform

This command applies a transformation on an entire Mesh or a single Mesh component.
Parameters:
The parameters of this command are

1. 1% parameter EDC containing the component number

404 CHAPTER 3. HOTINT REFERENCE MANUAL

2. 2™ parameter EDC containing the transformation parameters

multiple entries for a single call are allowed and are processed in the same sequence as stated
belowentries in the transformation parameters EDC are:

e scale - scaling vector
e rotate - rotation vector - rotation angles around global axis, processed in sequence (x,y,z)

translate - translation vector

e name - name of the component

Generation.GeometricNonlinearityStatus - gnls for all nodes below - -1..dont change 0..Linear
1..NonlinearSmallStrain 2..NonlinearLargeStrain

return values:
The return value is the component number of the newly generated component (usually the
same number as the input component number)

Example

see file MeshTransformMesh.txt

meshparameters
{
mesh_type
mesh_name
}

Mesh2 = GenerateNewMesh(meshparameters)

"SolidMesh"
"Mesh2"

blockmaterial

{
material_type = "Material"
Solid.density = 7850
Solid.youngs_modulus = 2.1lell
Solid.poisson_ratio = 0.3

}

mnr_block = AddMaterial(blockmaterial)

blockparameters

{
component_name = "TwoCubed"
component_type = "Block"
Generation.matnr = mnr_block
Generation.discretization = [2,2,2]

}

compnr = Mesh2.GenerateBlock(blockparameters)

transformation

{

3.15. COMMAND 405

name = "pullme"

scale = [1. 2. .5]

rotate = [0. -0.5 0.]

translate = [2. 0. 0]
}

Mesh2.Transform(1l,transformation)
Mesh2.GenerateBlock(blockparameters)

Mesh2.AddMeshToMBS (1)

3.15.33 Distort

This command applies a distortion on an entire Mesh or a single Mesh component.
Parameters:
The parameters of this command are

1. 1% parameter EDC containing the component number

2. 2™ parameter EDC containing the distortion parameters

entries in the distortion parameters EDC are:

e fx - function to compute new x-coordinate - string, use (x,y,z) as function parameters

fy - function to compute new y-coordinate - string, use (x,y,z) as function parameters

fz - function to compute new z-coordinate - string, use (x,y,z) as function parameters

e name - name of the component

Generation.GeometricNonlinearityStatus - gnls for all nodes below - -1..dont change 0..Linear
1..NonlinearSmallStrain 2..NonlinearLargeStrain

when no function defined the coordinate is not changed. -

return values:

The return value is the component number of the newly generated component (usually the
same number as the input component number)

Example

see file MeshDistort.txt

meshparameters
{
mesh_type = "SolidMesh"
mesh_name = "Mesh2"
}
Mesh2 = GenerateNewMesh(meshparameters)
blockmaterial
{

material_type = "Material"

406 CHAPTER 3. HOTINT REFERENCE MANUAL

Solid.density = 7850
Solid.youngs_modulus = 2.1ell
Solid.poisson_ratio = 0.3

}

mnr_block = AddMaterial(blockmaterial)

blockparameters

{
component_name = "TwoCubed"
component_type = "Block"
Generation.matnr = mnr_block
Generation.discretization = [6,6,6]

}

compnr = Mesh2.GenerateBlock(blockparameters)

distortion
{
name = "halfpipe"
fx = "x-2"
fy = "y*x(2%(x-0.5)"2+0.5"
fz = "z"
}

Mesh2.Distort(1,distortion)
Mesh?2.GenerateBlock(blockparameters)

Mesh?2.AddMeshToMBS (1)

3.15.34 Modify

This command applies a modification on an entire Mesh or a single Mesh component. A filter
list can be used

Parameters:

The parameters of this command are

1. 1%¢ parameter EDC containing the component number

2. 2" parameter EDC containing the modify parameters
entries in the modify parameters EDC are:

e entity - string - valid entries are: "NodeType","ElementType","MaterialNumber"," GeometricNonlinear

e newValue - various, matching the entity... - e.g. for entity ElementType any valid Element-
TypeString

o filter - integer - index number of a Set added to the system or zero

e name - name of the component

return values:
The return value is the component number of the newly generated component (usually the
same number as the input component number)

3.15. COMMAND 407

Example

see file MeshModify.txt

3.15.35 Linear2Quadratic

This command converts elements for an entire Mesh or a single Mesh component.
Parameters:
The parameters of this command are

1. 1%¢ parameter EDC containing the component number

2. 2" parameter EDC containing the additional parameters
entries in the additional parameters EDC are:

e name - name of the component

e Generation.GeometricNonlinearityStatus - gnls for all nodes below - -1..dont change 0..Linear
1..NonlinearSmallStrain 2..NonlinearLargeStrain

return values:
The return value is the component number of the newly generated component (usually the
same number as the input component number)

Example

see file MeshLinear2Quadratic.txt

meshparameters

{
mesh_type
mesh_name

by

Mesh2 = GenerateNewMesh(meshparameters)

"SolidMesh"
"Mesh2"

blockmaterial

{
material_type = "Material"
Solid.density = 7850
Solid.youngs_modulus = 2.1lell
Solid.poisson_ratio = 0.3

}

mnr_block = AddMaterial(blockmaterial)

blockparameters

{
component_name = "TwoCubed"
component_type = "Block"

408 CHAPTER 3. HOTINT REFERENCE MANUAL

Generation.material_number = mnr_block
Generation.discretization = [1,1,1]

3

compnr = Mesh2.GenerateBlock(blockparameters)

lin2quadparams.name = "D20!"
Mesh2.Linear2Quadratic(l,lin2quadparams)

Mesh?2.AddMeshToMBS (1)

3.15.36 SplitHexes

This command converts hexahedrals to (5)tetrahedrals, (3)pyramids or (2)prisms for an entire
Mesh or a single Mesh component.

Parameters:

The parameters of this command are

1. 1%¢ parameter EDC containing the component number

2. 2™ parameter EDC containing the conversion parameters

e split - number of items to split the hexahedral into - may be (2), (3), (5)
e name - name of the component

e Generation.GeometricNonlinearityStatus - gnls for all nodes below - -1..dont change 0..Linear
1..NonlinearSmallStrain 2..NonlinearLargeStrain

return values:
The return value is the component number of the newly generated component (usually the
same number as the input component number)

Example

see file MeshSplitHexes.txt

meshparameters

{
mesh_type
mesh_name

3

Mesh2 = GenerateNewMesh (meshparameters)

"SolidMesh"
"Mesh2"

blockmaterial

{
material_type = "Material"
Solid.density = 7850
Solid.youngs_modulus = 2.1ell
Solid.poisson_ratio = 0.3

}

mnr_block = AddMaterial (blockmaterial)

3.15. COMMAND 409

blockparameters

{
component_name = "TwoCubed"
component_type = "Block"
Generation.matnr = mnr_block
Generation.discretization = [2,2,2]

Mesh2.GenerateBlock (blockparameters)
transformationparameters.translate = [0 -2 0]
Mesh2.Transform(1l,transformationparameters)
splitparameters.split=5

splitparameters.name = "Tets"
Mesh2.SplitHexes(1,splitparameters)

Mesh2.GenerateBlock(blockparameters)
transformationparameters.translate = [0 O 0]
Mesh2.Transform(2,transformationparameters)
splitparameters.split=3
splitparameters.name = "Pyramids"
Mesh2.SplitHexes(2,splitparameters)

Mesh?2.GenerateBlock(blockparameters)
transformationparameters.translate = [0 2 0]
Mesh2.Transform(3,transformationparameters)
splitparameters.split=2
splitparameters.name = "Prisms"
Mesh2.SplitHexes(3,splitparameters)

Mesh?2.AddMeshToMBS (1)

3.15.37 Refine

This command applies a refinement on an entire Mesh or a single Mesh component.
Parameters:
The parameters of this command are

1. 1% parameter EDC containing the component number

2. 2" parameter EDC containing the refinementparameters

entries in the distortion parameters EDC are:

e Generation.level - list of subdivision levels for all nodes of the subordinate component

e Generation.method - string defining the method: default 0 for all directions. 1,2 or 3 to skip
single local direction

e name - name of the component

e Generation.GeometricNonlinearityStatus - gnls for all nodes below - -1..dont change 0..Linear
1..NonlinearSmallStrain 2..NonlinearLargeStrain

410 CHAPTER 3. HOTINT REFERENCE MANUAL

return values:
The return value is the component number of the newly generated component (usually the
same number as the input component number)

Example

see file MeshRefine.txt

meshparameters

{
mesh_type = "StructuralMesh"
mesh_name = "Meshl"

}

Meshl = GenerateNewMesh(meshparameters)

platematerial

{
material_type = "Material"
Solid.density = 7850

Solid.youngs_modulus = 2.1lell
Solid.poisson_ratio = 0.3

b
mnr_plate = AddMaterial(platematerial)
plateparameters
{
component_name = "6tiles"

Generation.P1 = [0., O.,
Generation.P2 = [3., 0.,
Generation.P3 = [0., 2.,
Generation.P4 [3., 2.,
Generation.material _number = mnr_plate
Generation.discretization = [3,2]
Generation.thickness = 0.1

oo oo
L O L

}

mnrl = Meshl.GeneratePlate(plateparameters)

refine

{
Generation.level = [1, 1, 0, O, 1, 1, O, O, 1, 0, 1, O] % seed for 12 nodes of the 6-elemen
name = "pattern"

3

Meshl.Refine(mnrl,refine)

extrudeparameters.axis = 3
Meshl.Extrude (mnrl,extrudeparameters)

Mesh1.AddMeshToMBS (1)

3.15. COMMAND 411

3.15.38 Rotate

This command rotates a subordinate mesh around a given axis (2D -> 3D)
Parameters:
The parameters of this command are

1. 1% parameter EDC containing the component number

2. 2™ parameter EDC containing the conversion parameters

e axis number - rotates around the axis 1..x 2.y 3..z
e angular segments - number of elements around the circumflex

e total angle - 360 for a full rotation

additionally the following parameters may be specified for the extruded component
e thickness - thickness for the plates when extruding curves
e name - name of the component

e Generation.GeometricNonlinearityStatus - gnls for all nodes below - -1..dont change 0..Linear
1..NonlinearSmallStrain 2..NonlinearLargeStrain

return values:
The return value is the component number of the newly generated component (usually the
same number as the input component number)

Example

see file MeshRotate.txt

meshparameters

{
mesh_type = "SolidMesh"
mesh_name "Mesh2"

}

Mesh2 = GenerateNewMesh (meshparameters)

blockmaterial

{
material_type = "Material"
Solid.density = 7850
Solid.youngs_modulus = 2.1ell
Solid.poisson_ratio = 0.3

}

%% source has 7 domains

for(i=1,i<=7,i=i+1)

{

mnr_block = AddMaterial(blockmaterial)

}

412

Mesh2.LoadMesh("Netgen2D","trigs.txt")
rotationparameters.angular_segments=16
rotationparameters.total_angle=360
rotationparameters.name = "spinner"

Mesh2.Rotate(1,rotationparameters)

Mesh?2.AddMeshToMBS (1)

3.15.39 Mirror

CHAPTER 3. HOTINT REFERENCE MANUAL

This command mirrors a subordinate mesh at a given plane

Parameters:
The parameters of this command are

1. 1% parameter EDC containing the component number

2. 2" parameter EDC containing the mirror parameters

entries in the mirror parameters EDC are:
e plane - 1..x=0, 2..y=0, 3..z=0

e name - name of the component

e Generation.GeometricNonlinearityStatus - gnls for all nodes below - -1..dont change 0..Linear
1..NonlinearSmallStrain 2..NonlinearLargeStrain

return values:

The return value is the component number of the newly generated component (usually the
same number as the input component number)

Example

see file MeshMirror.txt

meshparameters

{
mesh_type
mesh_name

3

Mesh2 = GenerateNewMesh (meshparameters)

"SolidMesh"
"Mesh2"

blockmaterial

{
material_type = "Material"
Solid.density = 7850
Solid.youngs_modulus = 2.1ell
Solid.poisson_ratio = 0.3

}

mnr_block = AddMaterial (blockmaterial)

3.15. COMMAND 413

cylinderparameters

{
component_name = "HollowCylinder"
component_type = "Cylinder"
Generation.P1 = [0.8,0.0,2.0]
Generation.P2 = [1.1,0.0,2.0]
Generation.P3 = [0.8,0.0,3.0]
Generation.P4 = [1.2,0.0,3.0]

Generation.material_number = mnr_block
Generation.discretization = [2,2,2]
T

Mesh2.GenerateCylinder(cylinderparameters)
Mesh2.Mirror(1,1)
mirrorparams.plane = 2

mirrorparams.name = "onthewall"
Mesh2.Mirror(1l,mirrorparams)

Mesh2.AddMeshToMBS (1)

3.15.40 Extrude

This command extrudes a subordinate mesh along a given axis (1D->2D, 2D->3D)
Parameters:
The parameters of this command are

1. 1%¢ parameter EDC containing the component number

2. 2™ parameter EDC containing the conversion parameters

e axis number - extrude along the axis 1..x 2..y 3..z

e discretizaiton - number of elements along the axis

total extrusion - extrusion distance

e name - name of the component

Generation.GeometricNonlinearityStatus - gnls for all nodes below - -1..dont change 0..Linear
1..NonlinearSmallStrain 2..NonlinearLargeStrain

return values:
The return value is the component number of the newly generated component (usually the
same number as the input component number)

Example

see file MeshExtrude.txt

414 CHAPTER 3. HOTINT REFERENCE MANUAL

meshparameters

{

"StructuralMesh"
"Meshi1"

mesh_type
mesh_name

3

Meshl = GenerateNewMesh (meshparameters)

platematerial

{
material_type = "Material"
Solid.density = 7850
Solid.youngs_modulus = 2.1ell
Solid.poisson_ratio = 0.3
Solid.plane = yes
Solid.plane_stress = yes

}

mnr = AddMaterial (platematerial)
beamparameters.Generation.P1 = [0. 0. 0.]
beamparameters.Generation.P2 = [2. 0. 0.]

beamparameters.Generation.discretization = 2
Meshl.GenerateBeam(beamparameters)

extrudeparameters.axis_number = 2
extrudeparameters.name = "pix*z*z*a"
Meshl.Extrude(l,extrudeparameters)

MeshAsVar = Meshl.AddMeshToMBS (1)

3.15.41 AddMeshToMBS

This command generates an instance of the mesh in the MBS.

Parameters:

There are no parameters for this command, for compatibility please enter a dummy ’0’ at this
position. -

return values:

The return value is the Element Data conatiner of the added mesh (as shown in the Edit Mesh
Menu).

Example

see file MeshAddMeshToMBS.txt

meshparameters

{
mesh_type = "StructuralMesh"
mesh_name "Mesh1"

}

Meshl = GenerateNewMesh (meshparameters)

beamproperties

3.15. COMMAND 415

{
material_type = "Beam3DProperties"
cross_section_size = [0.1,0.1]
EA = 2e9
Ely = 2e6
EIz = 2e6
GJkx = 2e6
}
mnr_beam = AddBeamProperties(beamproperties)
beamparameters
{
Generation.P1 = [0. 0. 0.]
Generation.P2 = [1. 2. 3.]

Generation.matnr = mnr_beam
Generation.discretization = 4
Generation.element_size = 0.5

¥

Meshl.GenerateBeam(beamparameters)

MeshAsModelEDCVariable = Meshl.AddMeshToMBS (1)

3.15.42 GetNodesInBox

This command returns a list of nodes (registered to the mesh) in a given box.
Parameters:
The parameters of this command are

1. 1°* parameter EDC containing the box (defined by two corner)
enties in the properties EDC are:
e P1 - position of corner 1

e P2 - position of corner 2

return values:
The return value is a list of node numbers.

Example

see file GetNodesInBox.txt

meshparameters

{
mesh_type = "SolidMesh"
mesh_name "Mesh2"

}

Mesh2 = GenerateNewMesh(meshparameters)

416 CHAPTER 3. HOTINT REFERENCE MANUAL

blockmaterial

{
material_type = "Material"
Solid.density = 7850

Solid.youngs_modulus = 2.1lell
Solid.poisson_ratio = 0.3

}

mnr_block = AddMaterial(blockmaterial)

blockparameters
{
component_name = "TwoCubed"
component_type = "Block"
Generation
{
P1 = [-1.,-1.,-1.]
P2 =1[1.,-1.,-1.]
P3 = [-1., 1.,-1.]
P4 =1[1.,1.,-1.]
P5 = [-1.,-1., 1.]
P6 = [1.,-1., 1.]
p7 = [-1., 1., 1.]
P8 =[1.,1., 1.]
}

Generation.Material_number = mnr_block
Generation.discretization = [2,2,2]

}
Mesh2.GenerateBlock (blockparameters)

Mesh2.AddMeshToMBS (1)

[-0.05,-0.05,-0.05]
[0.05, 0.05, 0.05]

boxparameters.P1
boxparameters.P2

meshpicked = Mesh2.GetNodesInBox(boxparameters)

3.15.43 GetNodesInCylinder

This command returns a list of nodes (registered to the mesh) in a given cylinder or cylinder

shell.
Parameters:
The parameters of this command are

1. 1% parameter EDC containing the cylinder (defined by axis and two radii)

enties in the properties EDC are:
e P1 - position of bottom center
e P2 - position of top center

e Rout - outer shell radius

3.15. COMMAND

e Rin - inner shell radius, default 0 for full cylinder

return values:
The return value is a list of node numbers.

Example
see file GetNodesInCylinder.txt

meshparameters

{

"SolidMesh"
"Mesh2"

mesh_type
mesh_name

by

Mesh2 = GenerateNewMesh(meshparameters)

blockmaterial

{
material_type = "Material"
Solid.density = 7850
Solid.youngs_modulus = 2.1lell
Solid.poisson_ratio = 0.3

by

mnr_block = AddMaterial(blockmaterial)
cylinderparameters

{

component_name "FullCylinder"
component_type = "Cylinder"

Generation.Material_number = mnr_block
Generation.discretization = [2,2,1]

3

Mesh2.GenerateCylinder(cylinderparameters)
Mesh2.AddMeshToMBS(1)

delta = 1le-3

shellparameter.P1 = [0 0 0.9]
shellparameter.P2 = [0 0 1.1]
shellparameter.Rout = 1+delta

allupperhalf = Mesh2.GetNodesInCylinder(shellparameter)

% for given discretizaiton [2,2,1] -> 20..38

shellparameter.P1 = [0 0 -0.1]
shellparameter.P2 = [0 0 1.1]
shellparameter.Rin = .75-delta

outerlayers = Mesh2.GetNodesInCylinder(shellparameter)
% for given discretizaiton [2,2,1] -> 10..19, 29..38

417

418 CHAPTER 3. HOTINT REFERENCE MANUAL

3.15.44 GetNodesInSphere

This command returns a list of nodes (registered to the mesh) in a given sphere or spherical
shell.

Parameters:

The parameters of this command are

1. 1°" parameter EDC containing the sphere (defined by center and two radii)
enties in the properties EDC are:

e P1 - position of center

e Rout - outer shell radius

e Rin - inner shell radius, default 0 for full cylinder

return values:
The return value is a list of node numbers.

Example

see file GetNodesInSphere.txt

meshparameters
{
mesh_type
mesh_name
}

Mesh2 = GenerateNewMesh(meshparameters)

"SolidMesh"
"Mesh2"

blockmaterial

{
material_type = "Material"
Solid.density = 7850
Solid.youngs_modulus = 2.1lell
Solid.poisson_ratio = 0.3

}

mnr_block = AddMaterial(blockmaterial)

blockparameters

{
component_name "TwoCubed"
component_type = "Block"
Generation.Material_number = mnr_block
Generation.discretization = [2,2,2]

}

Mesh2.GenerateBlock(blockparameters)

Mesh2.AddMeshToMBS (1)

delta = 1le-3

3.15. COMMAND 419

shellparameter.P1 = [0.5 0.5 0.5] % center of cube

shellparameter.Rout = 0.75 +delta J this excludes the corners edgedist = sqrt(2)/2 < .71
allbutcorners = Mesh2.GetNodesInSphere(shellparameter)

% for given discretizaiton [2,2,2] -> 1..27 without {1,3,7,9, 19,21,25,27}

shellparameter .Rout = 0.5 +delta

shellparameter.Rin = 0.5 -delta

allfacecenters = Mesh2.GetNodesInSphere(shellparameter)
% for given discretizaiton [2,2,2] -> 5, 11,13,15,17, 23

%shellparameter

3.15.45 GetNodesInFunction

This command returns a list of nodes (registered to the mesh) in a region where a given function
f(x,y,2)>0 .

Parameters:

The parameters of this command are

1. 1% parameter EDC containing the function
enties in the properties EDC are:

e function - definition of the function as single string, dependencies on (x,y,z) as node coordi-
nates are assumed.

return values:
The return value is a list of node numbers.

Example

see file GetNodesInfunction.txt

meshparameters

{

"SolidMesh"
"Mesh2"

mesh_type
mesh_name

}

Mesh2 = GenerateNewMesh(meshparameters)

blockmaterial

{
material_type = "Material"
Solid.density = 7850
Solid.youngs_modulus = 2.1lell
Solid.poisson_ratio = 0.3

}
mnr_block = AddMaterial(blockmaterial)

CO1

420 CHAPTER 3. HOTINT REFERENCE MANUAL

blockparameters

{
component_name = "TwoCubed"
component_type = "Block"
Generation.Material_number = mnr_block
Generation.discretization = [2,2,2]

}
Mesh2.GenerateBlock(blockparameters)

Mesh2.AddMeshToMBS (1)

functionparameter.function = "x+y+z < 1.2"
cuttingplanelll = Mesh2.GetNodesInFunction(functionparameter)
% for given discretizaiton [2,2,2] -> 1,2,3, 4,5, 7, 10,11, 13, 19

delta = 0.001

functionparameter.function = "((1-delta)<(x+y))&&((x+y)<(1+delta))"
pickplanell0atl = Mesh2.GetNodesInFunction(functionparameter)

% for given discretizaiton [2,2,2] -> 3,5,7, 12,14,16, 21,23,25

%% equivalent to GetNodesInSphere example 2

functionparameter.function = "((0.495°2)<((x-.5)"2+(y-.5)"2+(z-.5)"2)) && (((x-.5)"2+(y-.5)"2+(:
allfacecenters = Mesh2.GetNodesInFunction(functionparameter)

% for given discretizaiton [2,2,2] -> 5, 11,13,15,17, 23

3.15.46 GetNodePos

This command returnsthe global position of a given node.
Parameters:
The parameters of this command are

1. global node number

return values:
The return value is a 3D position vector.

Example

see file GetNodePosition.txt

meshparameters
{
mesh_type = "SolidMesh"
mesh_name = "Mesh2"
}
Mesh2 = GenerateNewMesh(meshparameters)
blockmaterial
{

material_type = "Material"

3.15. COMMAND 421

Solid.density = 7850
Solid.youngs_modulus = 2.1ell
Solid.poisson_ratio = 0.3

}

mnr_block = AddMaterial(blockmaterial)

blockparameters

{
component_name "TwoCubed"
component_type = "Block"
Generation.Material_number = mnr_block
Generation.discretization = [2,2,2]

}

Mesh?2.GenerateBlock(blockparameters)

Mesh?2.AddMeshToMBS (1)

Mesh2.GetNodePos (1)
Mesh?2.GetNodePos(8)

nodelpos
node8pos

3.15.47 GetFacesFromNodes

This command returns a list of elements and face numbers (registered to the mesh) that can
be built from nodes in the input.

Parameters:

The parameters of this command are

1. 1% parameter: a set of global node numbers

2. 2" parameter: a set of elements to process, use 0 for all elements

return values:
The return value is a container with a list of element numbers and a list of face numbers.

3.15.48 GlueMesh

This command glues mesh together.
Parameters:
The parameters of this command are

1. 1%¢ parameter EDC containing the component numbers

2. 2" parameter EDC containing additional parameters for the glue operation
enties in the properties EDC are:

e usepenalty - set to one for penalty constraints, 0(default) for lagrangian

return values:
The return value is the component number of the MeshGlue-Component (usually the lowest of
the input component numbers

422 CHAPTER 3. HOTINT REFERENCE MANUAL

Example

see file MeshGlueMesh.txt

meshparameters

{

"StructuralMesh"
"Mesh1"

mesh_type
mesh_name

}

Meshl = GenerateNewMesh(meshparameters)

platematerial

{
material_type = "Material"
Solid.density = 7850
Solid.youngs_modulus = 2.1lell
Solid.poisson_ratio = 0.3
Solid.plane = yes
Solid.plane_stress = yes

}
mnr_plate = AddMaterial(platematerial)

plateparameters

{
component_name = "tile_1"
Generation.P1l =
Generation.P2 =
Generation.P3 =
Generation.P4 = -
Generation.matnr = mnr_plate
Generation.discretization = [1,1]
Generation.thickness = 0.1

* *

v v

* *

/o
N O N O
NN O O
o o oo
TR

*

}

Meshl.GeneratePlate(plateparameters)
plateparameters.component_name = "tile_2"
plateparameters.Generation.P1 = [-2., 0., 0.]
plateparameters.Generation.P2 = [0., 0., 0.]
plateparameters.Generation.P3 = [-2., 2., 0.]
plateparameters.Generation.P4 = [0., 2., 0.]
Meshl.GeneratePlate(plateparameters)
plateparameters.component_name = "tile_3"
plateparameters.Generation.P1 = [0.,-2., 0.]
plateparameters.Generation.P2 = [2.,-2., 0.]
plateparameters.Generation.P3 = [0., 0., 0.]
plateparameters.Generation.P4 = [2., 0., 0.]
Meshl.GeneratePlate (plateparameters)
plateparameters.component_name = "tile_4"
plateparameters.Generation.P1 = [0., 0., 0.]
plateparameters.Generation.P2 = [0., 0.,-2.]
plateparameters.Generation.P3 = [0., 2., 0.]

3.15. COMMAND 423

plateparameters.Generation.P4 = [0., 2.,-2.]
Meshl.GeneratePlate (plateparameters)

transformation

{
scale = [1. 1. 1.]
rotate = [0. -0.5 0.]
}

Meshl.Transform(4,transformation)
glueparams.name = "superglue"
Mesh1.GlueMesh(0,glueparams)

Mesh1.AddMeshToMBS (1)

3.15.49 GetLocalPosOfGlobalPos

This command returns the local position of a global position on a specified element.
Parameters:
The parameters of this command are

1. (integer) number of the element

2. (vector3D) global position

return values:
The return value is a 3D vector.

Example

see file GetLocalPositionP{GlobalPosition.txt

3.15.50 GetElementsInBox

This command returns a list of elements (registered to the mesh) in a given box.
Parameters:
The parameters of this command are

1. 1°" parameter EDC containing the box (defined by two corners)
enties in the properties EDC are:

e P1 - position of first corner

e P2 - position of second corner

return values:
The return value is a list of element numbers.

424 CHAPTER 3. HOTINT REFERENCE MANUAL

Example

see file GetElementsInBox.txt

3.15.51 GetElementAtPosition

This command returns a list of elements and local positions (registered to the mesh) at a given
position.

Parameters:

The parameters of this command are

1. 1% parameter EDC containing the position
enties in the properties EDC are:

e P1 - position to look at

return values:
The return value is a list of element numbers and a list of local positions numbers.

Example

see file GetElementAtPosition.txt

meshparameters

{
mesh_type = "SolidMesh"
mesh_name "Mesh2"

}

Mesh2 = GenerateNewMesh(meshparameters)

blockmaterial

{
material_type = "Material"
Solid.density = 7850
Solid.youngs_modulus = 2.1ell
Solid.poisson_ratio = 0.3

}

mnr_block = AddMaterial(blockmaterial)

blockparameters
{
component_name = "TwoCubed"
component_type = "Block"
Generation
{
P1 = [-1.,-1.,-1.]
P2 = [1.,-1.,-1.]
P3 = [-1., 1.,-1.]

3.15. COMMAND 425

P4=1[1., 1.,-1.]
P5 = [-1.,-1., 1.]
p6 =[1.,-1., 1.]
P7 = [-1., 1., 1.]
p8 =[1., 1., 1.]

}
Generation.Material_number = mnr_block
Generation.discretization = [2,2,2]

}
Mesh?2.GenerateBlock(blockparameters)

Mesh?2.AddMeshToMBS (1)

boxparameters.P1 = [-0.05,-0.05,-0.05]
boxparameters.P2 [0.05, 0.05, 0.05]

meshpicked = Mesh2.GetElementAtPosition(boxparameters)

3.15.52 GenerateNewPlot

This command generates a Handle to a PlotTool Object for further operations.
Parameters:
The parameters of this command are

1. 1%t parameter EDC to overwrite the default properties

the return vaule of the command MUST be assigned to a new variable(handle)
overwritable enties in the properties EDC are:

e layout file: may be StructuralMesh (default) or SolidMesh

return values:
The return value is a special EDC (Handle) that must be assigned to a new variable.

Example

see file PlotGenreatePlot.txt

3.15.53 ExportToFile

This command saves the content PlotTool Object for further operations.
Parameters:
The parameters of this command are

1. 1% parameter EDC containing entries for the possible export formats
available entries in the properties EDC are:

e width: width in pixels, use actual window size if not specified

426 CHAPTER 3. HOTINT REFERENCE MANUAL

e height: height in pixels, use actual window size if not specified

e export_file jpg: generates a .jpg file "name.jpg"
e export file png: generates a .png file "name.jpg"

e export file bmp: generates a .bmp file "name.jpg"

return values:
The return value is the number of the generated files.

Example

see file ExportPlot.txt

3.15.54 Close

This command closes the content PlotTool Object.
Parameters:

The parameters of this command are -

return values:

The return value is the filenabe of the generated file.

Example

see file ExportPlot.txt

3.15.55 DoesEntryExist

This command checks if the specified entry exists.
Parameters:
The parameters of this command are

1. 1% parameter: string with the name and tree of the entry to check

return values:

returns 0 if the entry does not exist, returns 1 if the entry exists, returns 2 if the entry is an EDC

3.15. COMMAND 427

Example

see file Container.txt

Root .NodeL.NodeL.path
Root.NodeL.NodeR.path
Root.NodeR.path = [1]

I
/M
o O
= O
—_

Leaf = "Root.NodeL.NodeR"
flag_exist = DoesEntryExist(Leaf)

str = StrCat(Leaf,".path")
p = GetByName(str)

newpath = [1 0]
SetByName ("Root .NodeR.NodeL.path" ,newpath)

null = 0O
SetByName ("Root .NodeL" ,null)

3.15.56 GetByName

This command lets you get any (existing) EDC entry by name.
Parameters:
The parameters of this command are

1. 1% parameter: string with the name and tree of the entry to get

return values:
returns the entry associated with the string.

Example

see file Container.txt

Root.NodeL.NodeL.path
Root.NodeL.NodeR.path
Root.NodeR.path = [1]

1]
/
o O
= O
—_

Leaf = "Root.NodeL.NodeR"
flag_exist = DoesEntryExist(Leaf)

str = StrCat(Leaf,".path")
p = GetByName(str)

newpath = [1 0]
SetByName ("Root .NodeR.NodeL.path" ,newpath)

null = 0O
SetByName ("Root .NodeL" ,null)

428 CHAPTER 3. HOTINT REFERENCE MANUAL

3.15.57 SetByName

This command lets you set any EDC entry by name, the name contains the absolute treename.
Parameters:
The parameters of this command are

1. 1% parameter: string with the name and tree of the entry to set

2. 2" parameter: the variable that should be assigned

return values:
has no return value.

Example
see file Container.txt
Root .NodeL.NodeL.path

Root.NodeL.NodeR.path
Root.NodeR.path = [1]

I
L B e |
o O
= O
—_

Leaf = "Root.NodeL.NodeR"
flag_exist = DoesEntryExist(Leaf)

str = StrCat(Leaf,".path")
p = GetByName(str)

newpath = [1 0]
SetByName ("Root .NodeR.NodeL.path" ,newpath)

null = 0O
SetByName ("Root .NodeL" ,null)

3.15.58 Compare

This command compares two strings.
Parameters:
The parameters of this command are

1. 1% parameter: string A

2. 2" parameter: string B

return values:
returns 0 if both strings are identical, returns >0 or <0 otherwise indicating which string has
higher value .

3.15. COMMAND

Example
see file strings.txt

str = "string"
strA = "string A"
strB = "string B"
strl = "1"

str2 = "2"

mone = Compare(strA,strB)
pone = Compare(strB,strl)
zero = Compare(str,str)

stringAB = StrCat(strA,strB)
stringl = StrCat(str,stril)
string2 = StrCat(str,str2)
stringl2 = StrCat(stringl,str2)

3.15.59 StrCat

This command joins two strings together

Parameters:

The parameters of this command are

1. 1% parameter: string A

2. 2" parameter: string B

429

You can also use integer or double values instead of the strings. Inline definition of strings,
e.g. StrCat("this is a ”,"test”), do not work properly. The spaces are not taken into account

correctly! -
return values:

returns a single string - strA+strB.

Example
see file strings.txt

str = "string"
strA = "string A"
strB = "string B"
strl = "1"

str2 = "2"

mone = Compare(strA,strB)
pone = Compare(strB,strl)
zero = Compare(str,str)

stringAB = StrCat(strA,strB)
stringl = StrCat(str,strl)
string2 = StrCat(str,str2)
stringl2 = StrCat(stringl,str2)

430 CHAPTER 3. HOTINT REFERENCE MANUAL

3.15.60 Zeros

This command sets a vector or matrix variable to agiven dimension and sets all entries to 0
Parameters:
The parameters of this command are

1. 1% parameter: length of the vector or first dimension of the matrix

2. 2" parameter: second dimenstion of the matrix

return values:
returns a vector or matrix variable

Example

see file lists.txt

mat22 = Zeros(2,4) % matrix

vec3 = Zeros(3,1) % vector
vec3t = Zeros(1,3) % matrix
vec3[1] =1

mat22[1,1] = 11
mat22[1,2] = 12

squares = Zeros(10,1)
for(i=1,i<11,i=i+1)

{
squares[i] = ix*i
¥
¢ = cols(vec3)
r = rows(vec3)

c2 = cols(vec3t)
r2 = rows(vec3t)

c3 = cols(mat22)
r3 = rows(mat22)

mat23 = [1 2
34
5 6]

Sensorpositions = [-0.0781,0.1457,0;-0.1033,0.1953,0;-0.1252,0.2384,0;-0.2647,0.1908,0;-0.2411
i=2

Sensorpositions[i,1]

y= Sensorpositions[i,2]

CurPos=[x,y,0]

o]
1]

3.15. COMMAND 431

3.15.61 IntArrayOp

This command allows operations on up two integer arrays, length of an array may be one, some
operations only require one array to operate on

Parameters:

The parameters of this command are

1. 1% parameter: type of operation as string

2. 2" parameter: first array operand

3. 3" parameter: second array operand

allowed operations are:

1. operation "Append’ or ’Add’ - adds the second array to the tail of the first array

2. operation "Union’, "Inter’ or 'Diff’ - computes union, intersection and difference set of the
two arrays

3. operation ’Asc’ and ’Desc’ - sorts the array, only the first input is processed

4. operation 'Find’ - returns a list of index numbers where numbers of the second array occurr
in the first

5. operation 'Unique’ removes multiple entries in the first array
6. operation ’AddConst’, "MultConst’

7. operation ’Sequence’

return values:
returns a vector variable

Example

see file ArrayOps.txt

primes = [2 3 5 7 11]
fibs = [11235 8]
squares = [1 4 9 16 25]
even = [2 46 8 10]

odd = [1357 9]

empty = []

resl = IntArrayOp("Append",primes,13)
res2 = IntArrayOp("Add",0,fibs)

res3 = IntArrayOp("Union",odd,even)
res4 = IntArrayOp("Inter",primes,fibs)
resb = IntArrayOp("Diff",squares,odd)

res6 IntArrayOp("Desc",even,0)

432

res7 = IntArrayOp("Unique",fibs,0)
res8 =

res9 = IntArrayOp("Append",odd,empty)

resl0 = IntArrayOp("Find",squares,odd)
resll = IntArrayOp("Find",primes,even)
resl2 = IntArrayOp("Find",fibs,7)

resl3 = IntArrayOp("AddConst",even,8)
resl4 = IntArrayOp("MultConst",odd,2)

IntArrayOp("Append",empty,even)

CHAPTER 3. HOTINT REFERENCE MANUAL

resld = IntArrayOp("AddArrays",odd,even)

resl6 = IntArrayOp("Sequence",1,10)
resl7 = IntArrayOp("Sequence",4,-4)

empty = [1337] %% otherwise Popup for len O vector variable

3.15.62 Timer

This command returns the current system time in milliseconds

Parameters:

The parameters of this command are

1. 0..no ouput, 1.. line in output window and log file

return values:

returns an integer variable

Example
see file Timer.txt
tic = Timer (0)

for(i=1,i<=1000,i=i+1)
{

Print("still counting...

Print (i)
Print("...\n")
}

toc = Timer(0)

spent = (toc-tic)
Print("time passed: ")
Print (spent)

Print ("\n")

now = Timer (1)

||)

3.15. COMMAND 433

3.15.63 AddSet

Adds a set to the system. See the description of the set above in order to get the available
options.

Parameters:

The parameter of this command is an ElementDataContainer with the data of the set. AT-
TENTION: the entry set_type must exist!

return values:

The return value of this command is the number of the set in the MBS.

Example

see file AddSet.txt

myRigid
{

element_type= "Rigid3D" Yspecification of element type.
}
AddElement (myRigid)
myRigid.Initialization.initial_position= [1, 0, O]
AddElement (myRigid)

Setl

{
set_name "SetOfElementsl1"
set_type = "ElementSet"
element_numbers = [1,2]

}

nSetl = AddSet(Setl)

3.15.64 AccessSet

This command makes a set accessable for script by copying it to Model variables
Parameters:
The parameters of this command are

1. 1% parameter: a setnumber

return values:
returns the EDC of the set

Example

see file AccessSet.txt

meshparameters

{
mesh_type "SolidMesh"
mesh_name = "Mesh"

434 CHAPTER 3. HOTINT REFERENCE MANUAL

}
Mesh = GenerateNewMesh(meshparameters)
blockmaterial
{
material_type = "Material"
Solid.density = 7850

Solid.youngs_modulus = 2.1lell
Solid.poisson_ratio = 0.3

}

mnr_block = AddMaterial(blockmaterial)

blockparameters

{
component_name = "TwoCubed"
component_type = "Block"
Generation.Material_number = mnr_block
Generation.discretization = [2,2,2]

}

Mesh.GenerateBlock(blockparameters)
Mesh.AddMeshToMBS (1)

SetDiag

{
set_name = '"nodes_diagonal"
set_type = "GlobalNodeSet"
global_node_numbers = [1 14 27]

}
nSetDiag = AddSet(SetDiag)
diagonal = AccessSet(nSetDiag)

3.15.65 GenerateConstraints

This command generates constraints for the given set
Parameters:
The parameters of this command are

1. 1% parameter: a set of global node numbers (more types will be added)
2. 2" parameter: parameters for the constraints

enties in the properties EDC are:

e mode - 'ground’ or "pair’(default)

e type - type string for the constraint to use

return values:
returns a list of element numbers for the generated constraints

3.15. COMMAND 435

Example
see file GenerateConstraints.txt

o
%% Define Material(s)
W
blockmaterial

{

material_type = "Material"
name = "BlockMaterial"
Solid.density = 7800
Solid.youngs_modulus = 2.1ell
Solid.poisson_ratio = 0.3

}
mnr_steelhomogen = AddMaterial(blockmaterial)
hth
%% Generate Mesh
hth
meshparameters
{
mesh_type = "SolidMesh"
mesh_name = "theMesh"
}
theMesh = GenerateNewMesh(meshparameters)
blockparameters
{
component_name = "UpperBlock"

component_type = "Block"
Generation.Material_number = mnr_steelhomogen
Generation.discretization = [2 2 2]

}

theMesh.GenerateBlock(blockparameters)

transformation.translate = [0.2 0 1]
theMesh.Transform(1l,transformation)

blockparameters.component_name = "LowerBlock"
blockparameters.Generation.discretization = [3 3 3]
theMesh.GenerateBlock(blockparameters)

%% add to mbs
MeshAsVar = theMesh.AddMeshToMBS(1)

%% connect - bottom nodes of upper block (’source’) to elements of lower block (’target’)
NodeSet.set_type = "GlobalNodeSet"

NodeSet.global_node_numbers = [1,2,3,4,5,6,7,8,9] %% nodes at bottom of upper block
nNodeSet = AddSet(NodeSet)

ElemSet.set_type = "ElementSet"
ElemSet.element_numbers = MeshAsVar.LowerBlock.list_of_elements

436

nElemSet = AddSet(ElemSet)

PJTemplate
{
element_type = "PointJoint"
Graphics.draw_size = 0.1
b
constraintparams.template = PJTemplate
constraintparams.type "PointJoint"
constraintparams.mode = "find"
constraintparams.findfilter = nElemSet

CHAPTER 3. HOTINT REFERENCE MANUAL

nConstr = GenerateConstraints(nNodeSet,constraintparams)
%% ground constraints
CConstrTemplate
{
element_type = "CoordinateConstraint"
Coordinatel.element_number = 1
Graphics.draw_size = 0.1
}
constraintparameter.type = "CoordinateConstraint"

constraintparameter.mode "ground"

constraintparameter.template = CConstrTemplate

constraintparameter.coordinatel = 3

NodeSet.global_node_numbers = [28,29,30,31, 32,33,34,35, 36,37,38,39, 40,41,42,43]

nNodeSet = AddSet(NodeSet)

cnrsZ = GenerateConstraints(nNodeSet, constraintparameter)

constraintparameter.coordinatel = 2

NodeSet.global_node_numbers = [28,29,30,31]

nNodeSet = AddSet(NodeSet)

cnrsX = GenerateConstraints(nNodeSet, constraintparameter)

constraintparameter.coordinatel = 1
NodeSet.global_node_numbers = [28, 32,
nNodeSet = AddSet (NodeSet)

36, 40]

cnrsY = GenerateConstraints(nNodeSet, constraintparameter)

%% topload
NodeSet.global_node_numbers = [19,20,21
nNodeSet = AddSet (NodeSet)

,22,23,24,25,26,27]

facet6 = theMesh.GetFacesFromNodes(nNodeSet,0)

ElemSet2.set_type = "ElementSet"
ElemSet2.element_numbers = [5,6,7,8]
nElemSet = AddSet(ElemSet2)

Areal.oad

{
name = "TopLoad"
load_type = "Areaload"

3.15. COMMAND 437

pressure = 1000
element_numbers = facet6.element_numbers
element_facet_numbers = facetb.element_facet_numbers

}
1nr = AddLoad(Areaload)
Assignload(nElemSet,1lnr)

3.15.66 GenerateSensors

This command generates sensors for the given set
Parameters:
The parameters of this command are

1. 1% parameter: a set of global node numbers (more types will be added)
2. 2" parameter: parameters for the sensors
enties in the properties EDC are:

e template - a template container containing SensorType etc...

return values:
returns a list of sensor numbers for the generated sensors

Example

see file GenerateSensors.txt

blockmaterial

{
material_type = "Material"
name = "BlockMaterial"

Solid.density = 7800
Solid.youngs_modulus = 2.1lell
Solid.poisson_ratio = 0.3

by

mnr_steelhomogen = AddMaterial(blockmaterial)

meshparameters

{
mesh_type = "SolidMesh"
mesh_name = "theMesh"

3

theMesh = GenerateNewMesh(meshparameters)

4

discrx
discry = 3
discrz = 2
blockparameters

{

component_name = "UnitBlock"

438 CHAPTER 3. HOTINT REFERENCE MANUAL

component_type = "Block"
Generation.Material_number = mnr_steelhomogen
Generation.discretization = [discrx discry discrz]
}
theMesh.GenerateBlock(blockparameters)
MeshAsVariable = theMesh.AddMeshToMBS (1)

offset_top = (discrx+1)*(discry+1)*(discrz)

nnrs = [1+offset_top (l+discrx)+offset_top l+discry*(l+discrx)+offset_top (l+discry)*(l+discrx
Setl

{

set_name "CornerNodes"
set_type "GlobalNodeSet"
global_node_numbers = nnrs

}
nSetl = AddSet(Setl)

sensorparameter.template.sensor_type = "FVElementSensor"
sensorparameter.template.field_variable = "displacement"
sensorparameter.template.component = "z"

snrs = GenerateSensors(nSetl,sensorparameter)

3.15.67 AssignMaterial

This command sets the material number of all elemenets of the element-set to a given number
Parameters:
The parameters of this command are

1. 1% parameter: a set of elements

2. 2" parameter: material number to be assigned

return values:
returns 0 or an error code

Example

see file AssignMaterial.txt

beam_material
{
material_type = "Beam3DProperties"
cross_section_size = [0.1,0.1]
}
AddBeamProperties(beam_material)
AddBeamProperties(beam_material)
node
{
node_type = "Node3DRxyz"

3.15. COMMAND 439

}
nl = AddNode(node)
node.Geometry.reference_position = [1,0,0]
n2 = AddNode(node)
beam
{
element_type= "LinearBeam3D"
Physics.material_number = 1
Geometry.node_1 = nil
Geometry.node_2 = n2

}
nBeam = AddElement(beam)

Setl

{
set_name = "ElementSet"
set_type = "ElementSet"
element_numbers = [1]

}

nSetl = AddSet(Setl)

AssignMaterial(nSet1,2) %% set with number nSet - assign material 2
AssignMaterial("ElementSet",1) %/ set with name "ElementSet" - assign material 1
AssignMaterial(1,2) %% first set - assign material 2

3.15.68 AssignLoad

This command adds a load to all elemenets of the element-set
Parameters:
The parameters of this command are

1. 1% parameter: a set of elements

2. 27 parameter: load number to be added or "ClearAll" to remove all loads

return values:
returns 0 or an error code

Example

see file AssignLoad.txt

beam_material

{
material_type = "Beam3DProperties"
cross_section_size = [0.1,0.1]

}

AddBeamProperties(beam_material)

440 CHAPTER 3. HOTINT REFERENCE MANUAL

AddBeamProperties(beam_material)
node
{
node_type = "Node3DRxyz"
}
nl = AddNode (node)
node.Geometry.reference_position = [1,0,0]
n2 = AddNode(node)
beam
{
element_type= "LinearBeam3D"
Physics.material_number = 1

Geometry.node_1 = nl
Geometry.node_2 = n2
}
nBeam = AddElement (beam)
Gravity
{

load_type = "Gravity"
name = "Gravity"
direction = 3
gravity_constant = -9.81

}
gravnr = AddLoad(Gravity)
Setl
{
set_name = "ElementSet"

set_type = "ElementSet"
element_numbers = [1]

}

nSetl = AddSet(Setl)

AssignLoad(nSet1,1) %% set with number nSet - assign load 1
AssignLoad("ElementSet","Gravity") 4% set with name "ElementSet" - assign load named "Gravi-

3.15.69 ChangeProperties

This command changes properties of the elements of the set
Parameters:
The parameters of this command are

1. 1% parameter: a set of elements or global nodes

2. 2™ parameter: EDC containing substitute parameters EDC

return values:
returns 0 or an error code

3.15. COMMAND 441

Example
see file ChangeProperties.txt

meshparameters

{

"StructuralMesh"
"Mesh1"

mesh_type
mesh_name

}

Meshl = GenerateNewMesh(meshparameters)

platematerial

{
material_type = "Material"
Solid.density = 7850
Solid.youngs_modulus = 2.lell
Solid.poisson_ratio = 0.3

}

mnr_plate = AddMaterial(platematerial)

plateparameters

{
component_name = "tile_1"
Generation.P1 = [0., 0., 0.]
Generation.P2 = [2., 0., 0.]
Generation.P3 = [0., 2., 0.]
Generation.P4 = [2., 2., 0.]

Generation.matnr = mnr_plate
Generation.discretization = [3,3]
Generation.thickness = 0.1

}

Meshl.GeneratePlate(plateparameters)
MeshAsVariable = Meshl.AddMeshToMBS (1)

Setl

{
set_name = "SomeElements"
set_type = "ElementSet"
element_numbers = [1,3,7,9]

}

nSetl = AddSet(Setl)

invisible.Graphics.show_element = 0

ChangeProperties(nSetl,invisible)

Set2
{
set_name = "AllNodes"
set_type = "GlobalNodeSet"
global_node_numbers = MeshAsVariable.list_of_nodes
}
nSet2 = AddSet(Set2)
initvel.Initialization.node_initial_values = [0,0,0, 0,0,0, 0,0,0, 0,0,1, 0,0,0, 0,0,0]

442 CHAPTER 3. HOTINT REFERENCE MANUAL

ChangeProperties(nSet2,initvel)

3.15.70 SetInitialCondition

This command sets the initial condition of all members of the element or node set.
Parameters:
The parameters of this command are

1. 1% parameter: a set of elements or global nodes
2. 2" parameter: index of initial value
3. 3" parameter: expression of the value. Can contain:

e "x" for the global reference position of the node or element
e "y" for the global reference position of the node or element

e "z" for the global reference position of the node or element

3.15.71 OpenCompiledModel

This command loads a model from the compiled models
Parameters:
The parameters of this command are

1. 1% parameter: string with the name of the model to load

return values:
returns 0 for fail, 1 for successful load

3.16. OPTIONS

3.16 Options

These options are available:

SolverOptions [3.16.1

LoggingOptions [3.16.2

GeneralOptions [3.16.3

ViewingOptions [3.16.4

e PlotToolOptions |3.16.5

443

SolverOptions can be saved in the GUI separately of the other HOTINT options.

3.16.1 SolverOptions

Data objects of SolverOptions:

] Data name \ type \ default description

SolverOptions

SolverOptions.start_time double | 0 Starting time of simulation, usually 0; for static and
timeint solver

SolverOptions.end _time double 10 Final simulation time; for static and timeint solver

SolverOptions. bool 0 Do only static computation; velocities and accele-

do_static_computation ration terms are ignored; system may not have ki-
nematic degrees of freedom.

SolverOptions.Timeint

SolverOptions. Timeint. double | 0.001 Maxial step size of timeint solver.

max_step_size

SolverOptions.Timeint. double | 0.0001 Minimal step size of timeint solver.

min_step_size

SolverOptions.Timeint. integer | 2 maximum index which solver the solver needs to

max_index handle

SolverOptions.Timeint. string "LobattoIIIA" | Runge Kutta tableau chosen

tableau name

SolverOptions.Timeint. integer | 2 Number of stages for simulation, max. stages for

max_stages variable order.

SolverOptions.Timeint. integer | 1 Min. stages for variable order.

min_stages

SolverOptions. Timeint. bool 0 1](0) ... Full adaptive stepsize selection of timeint

automatic _stepsize control is (not) active?

SolverOptions.Timeint. double | 0.01 Initial stepsize for timeint.

init_step size

SolverOptions.Timeint. double | 0.01 Absolute accuracy, for full adaptive timeint.

absolute _accuracy

SolverOptions.Timeint. double 1 Relative accuracy, for full adaptive timeint.

relative _accuracy

SolverOptions.Timeint. integer | 0 1/(0) ... Variable order algorithm is (not) active.

variable order

SolverOptions. Timeint. bool 1 1 .. Use implicit integration, 0..use explicit integra-

do_implicit _integration tion.

SolverOptions.Timeint. bool 1 Reset start time and initial values after each simu-

reset _after simulation lation.

SolverOptions.Timeint.as- bool 0 Experimental version of constant mass matrix

sume_constant _mass_matrix (WARNING: experimental only)

444

CHAPTER 3. HOTINT REFERENCE MANUAL

SolverOptions.Static

reuse_last eigenvectors

SolverOptions.Static. double le-012 Minimal increment.

min load inc

SolverOptions.Static. double 1 Maximum load increment.

max_load inc

SolverOptions.Static. double 1 Initial load increment.

init load inc

SolverOptions.Static. double | 2 Increase load increment if success very often.

load inc_up

SolverOptions.Static. double 2 Decrease load increment if no success.

load inc_down

SolverOptions.Static. integer | 1 Ifincrease load inc_steps successfull steps —> le-

increase load inc_steps ads to increase of load increment.

SolverOptions.Static. double | 0 Spring-type regularisation parameter to stabilize al-

spring regularisation parameter most kinematic systems during static comp.

SolverOptions.Static. integer | 0 Enables/disables [1/0] the use of the relaxation fac-

use_tolerance relax factor tor on the tolerance goal (discontinuous accuracy)
within static comp. Relaxation depends on load
factor (0..1)

SolverOptions.Static. double 10 Uper bound for relaxation factor on the tolerance

max_tolerance relax factor goal (discontinuous accuracy)

SolverOptions.Static. bool 1 Experimental: optimized (low memory) sparse ja-

experimental sparse jacobian cobian matrix

SolverOptions.Newton

SolverOptions.Newton. double 1e-008 Relative accuracy for Newton method

relative _accuracy

SolverOptions.Newton. double 100 Absolute accuracy for Newton method

absolute _accuracy

SolverOptions.Newton. double 1e-007 Numerical differentiation parameter

num _diff parameter

SolverOptions.Newton. bool 1 Use central difference quotient for numerical diffe-

use__central _diff quotient rentiation (slower).

SolverOptions.Newton. bool 1 Use modified Newton (approximated Jacobian,

use_modified newton much faster).

SolverOptions.Newton. integer | 12 Max. modified Newton steps.

max_modified newton _steps

SolverOptions.Newton. integer | 15 Max. modified Newton steps after restart.

max_restart newton_ steps

SolverOptions.Newton. integer | 25 Max. full Newton steps.

max_full newton steps

SolverOptions.Newton. bool 0 0...do not use trust region; 1..use line search algo-

use trust_region rithm for newton’s method, usually not necessary.

SolverOptions.Newton. double | 0.1 Increment for line search.

trust_region division

SolverOptions.Newton. double | 0.7 Used in modified Newton: if ratio error over last

low _contractivity _tolerance error violates this bound more than twice, then Ja-
cobian is recomputed.

SolverOptions.Newton. double 2 Used in modified Newton: if ratio error over last er-

high contractivity _tolerance ror violates this bound more than twice, then switch
to classical Newton method.

SolverOptions.Eigensolver

SolverOptions.Eigensolver. bool 0 This overwrites the dostaticcomputation flag

do_eigenmode computation and activates eigenmode computation on button
START.

SolverOptions.Eigensolver. bool 0 Reuse eigenvectors from last computation (faster,

but might be eigenvectors from different system).

3.16. OPTIONS

445

SolverOptions.Eigensolver. integer | 3 Number of eigenvalues and eigenmodes to be com-

n_eigvals puted for sparse iterative methods.

SolverOptions.Eigensolver. integer | 1000 Maximum number of iterations for iterative eigen-

max_ iterations value solver.

SolverOptions.Eigensolver. integer | O Solvertype for eigenvalue computations: O0..direct

solver _type (LAPACK), 1..Arnoldi (Matlab), 2. LOBPCG (Ho-
tInt).

SolverOptions.Eigensolver. integer | 0 Number of zero eigenvalues (convergence check).

n_zero_ modes

SolverOptions.Eigensolver. bool 0 Check convergence for zero eigenvalues.

use_n_zero_modes

SolverOptions.Eigensolver. bool 0 Use preconditioner inv(K + lambda M)

use_preconditioning

SolverOptions.Eigensolver. double 1e-010 Tolerance for iterative Eigenvalue solver.

accuracy

SolverOptions.Eigensolver. double |1 lambda for preconditioner inv(K + lambda M)

preconditioner lambda

SolverOptions.Eigensolver. double | 1 scaling factor for the eigenmodes

eigenmodes _scaling factor

SolverOptions.Eigensolver. integer | 0 0 (standard)... max(v) =1, 1. v'lv=1

eigenmo-

des normalization _mode

SolverOptions.Eigensolver.line- | bool 0 Use actual solution as configuration for lineariza-

arize_about _actual solution tion of K/M

SolverOptions.Eigensolver. bool 0 Use gyroscopy terms for Eigenvalue computation

use_gyroscopic__terms

SolverOptions.Eigensolver. integer | 3 print (bitwise sum) 1 .. eigenfreq., 2 .. eigenvec., 4

eigval outp format flag . eigenfreq. in Hz (otherwise in rad/s)

SolverOptions.Linalg

SolverOptions.Linalg. bool 0 1/(0) ... Sparse Jacobian and sparse solver is

use_sparse_solver (not)activated.

SolverOptions.Linalg. bool 0 1](0) ... Solve system which is overdetermined (least

undetermined system squares solution) or underdetermined (minimum
norm solution) via LAPACK routine dgels.

SolverOptions.Linalg. double le+012 Used for considering equations to be linearly de-

estimated condition number pendent when solving undetermined systems. Use
together with option undetermined system.

SolverOptions.Discontinuous

SolverOptions.Discontinuous. double | 0.0001 Accuracy for discontinuous problems (plasticity,

absolute _accuracy contact, friction, ...).

SolverOptions.Discontinuous. integer | 8 Max. number of iterations for discont. problems.

max_iterations

SolverOptions.Discontinuous. bool 0 continue anyway if error goal is not reached after

ignore_max__iterations max discontinuous iterations

SolverOptions.Solution

SolverOptions.Solution. bool 1 (0)[1 ... (Don’t) write results to file.

write_solution

SolverOptions.Solution. integer | 1 Write solution every xx steps.

write solution every x _step

SolverOptions.Solution. bool 1 1 ... SLOW: immediately write data to file with ’«

immediately write file flush’ (no buffering), 0=FAST

SolverOptions.Solution. bool 0 1 = always replace files, 0 = append solution to files

always_replace_files

SolverOptions.Solution.SolutionFile

SolverOptions.Solution. bool 1 Write solution file header.

SolutionFile.
write_solution file header

446 CHAPTER 3. HOTINT REFERENCE MANUAL

m Comment written in solution file header.

SolverOptions.Solution. string
SolutionFile.

solution file header comment

SolverOptions.Solution. string "sol.txt" Filename for general solution file (sensor output).
SolutionFile.output filename

SolverOptions.Solution. integer | 0 (0)fixed point, (1)scientific with exp, (2) floating
SolutionFile.output _format point notation in solution files

SolverOptions.Solution.ParameterFile

SolverOptions.Solution. string "solpar.txt" Filename for parameter variation solution file.
ParameterFile.
parameter _variation filename

SolverOptions.Solution. bool 1 Write final sensor values into parameter file.
ParameterFile.
write final sensor values

SolverOptions.Solution. bool 1 Write cost function of sensors into parameter file.
ParameterFile.
write_cost_ function

SolverOptions.Solution. bool 0 Write second order size into parameter file.
ParameterFile.
write second order_size

SolverOptions.Solution. bool 0 Write CPU-time into parameter file.
ParameterFile.
write CPU _time

SolverOptions.Solution. integer | 0 Store final solution state in file.
store solution state

nn

SolverOptions.Solution. string Filename for final solution state storage.

store solution state name

SolverOptions.Solution. integer | O Load initial configuration from file.
load _solution _state

nn

SolverOptions.Solution. string Filename for initial configuration.

load solution state name

SolverOptions.Solution.Sensor

SolverOptions.Solution.Sensor. bool 0 Compute eigenvalues in postprocessing.
postproc__compute eigenvalues

SolverOptions.Solution.Sensor. integer | 17 Decimal precision for the floating-point values in
output_ precision solution files

SolverOptions.Element

SolverOptions.Element. bool 1 Store intermediate matrices for finite elements (fas-
store_finite_elements matrices ter, but uses huge memory).
SolverOptions.Element. bool 1 Jacobian is computed only for each element, taking
element wise jacobian into account known couplings.
SolverOptions.Parameter Variation

SolverOptions. bool 0 Do multiple computations by varying a parameter
ParameterVariation.activate in a certain range.

SolverOptions. bool 0 Vary parameter geometrically (a*x, a*a*x,
ParameterVariation.geometric a*a*a*x, ...).

SolverOptions. double | 0 Start value for parameter variation.
ParameterVariation.start value

SolverOptions. double 0 Final value for parameter variation.
ParameterVariation.end value

SolverOptions. double 1 Arithmetic step size for parameter variation.
ParameterVariation.

arithmetic _step

SolverOptions. double 2 Geometric factor for parameter variation.
ParameterVariation.

geometric _step

3.16. OPTIONS

447

SolverOptions.
ParameterVariation.
MBS EDC variable name

string

Path and variablename in MBS EDC which shall
be varied in parameter variation.

SolverOptions.ParameterVar

jation.Var2

SolverOptions. bool 0 Do multiple computations by varying a parameter

ParameterVariation.Var2. in a certain range.

activate

SolverOptions. bool 0 Vary parameter geometrically (a*x, a*a*x,

ParameterVariation.Var2. a*a*a*x, ...).

geometric

SolverOptions. double | 0 Start value for parameter variation.

ParameterVariation.Var2.

start _value

SolverOptions. double | 0 Final value for parameter variation.

ParameterVariation.Var2.

end value

SolverOptions. double 1 Arithmetic step size for parameter variation.

ParameterVariation.Var2.

arithmetic _step

SolverOptions. double 2 Geometric factor for parameter variation.

ParameterVariation.Var2.

geometric _step

SolverOptions. string " Path and variablename in MBS EDC which shall

ParameterVariation.Var2. be varied in parameter variation.

MBS EDC _variable name

SolverOptions.Optimization

SolverOptions.Optimization. bool 0 Do multiple computations by genetic optimization

activate of parameter(s) in a certain range.

SolverOptions.Optimization. bool 0 (0)1 ... (Don’t) perform single simulation with no-

run_ with nominal parameters minal parameters.

SolverOptions.Optimization. integer | 0 Define sensor number(s) here; (the sum of) the end

sensors value(s) of the sensor signal time history is defined
as cost function. The use of more than one sensor
is planned.

SolverOptions.Optimization. bool 0 (0)1...(Don’t) continue parameters optimization ba-

restart sed on existing parameter file. 0..create new para-
meter file, 1..append to existing parameter file.

SolverOptions.Optimization. string "Genetic" Genetic: optimize using random parameters, best

method

parameters are further tracked.

SolverOptions.Optimization.Parameters

SolverOptions.Optimization. integer | 0 Number of parameters to optimize.
Parameters.

number of params

SolverOptions.Optimization. string n Parameter name.
Parameters.param _namel

SolverOptions.Optimization. double 0 Lower limit of parameter.
Parameters.param _minvall

SolverOptions.Optimization. double | 0 Upper limit of parameter.
Parameters.param maxvall

SolverOptions.Optimization. string n Parameter name.
Parameters.param _name2

SolverOptions.Optimization. double 0 Lower limit of parameter.
Parameters.param__minval2

SolverOptions.Optimization. double | 0 Upper limit of parameter.
Parameters.param maxval2

SolverOptions.Optimization. string n Parameter name.

Parameters.param name3

Newton.param _epsilon _rel

448 CHAPTER 3. HOTINT REFERENCE MANUAL
SolverOptions.Optimization. double | 0 Lower limit of parameter.
Parameters.param minval3
SolverOptions.Optimization. double | 0 Upper limit of parameter.
Parameters.param maxval3
SolverOptions.Optimization. string "" Parameter name.
Parameters.param name4
SolverOptions.Optimization. double | 0 Lower limit of parameter.
Parameters.param minval4
SolverOptions.Optimization. double | 0 Upper limit, of parameter.
Parameters.param _maxval4
SolverOptions.Optimization. string "" Parameter name.
Parameters.param _nameb
SolverOptions.Optimization. double 0 Lower limit of parameter.
Parameters.param _minvalb
SolverOptions.Optimization. double | 0 Upper limit of parameter.
Parameters.param maxval)
SolverOptions.Optimization. string n Parameter name.
Parameters.param _name6
SolverOptions.Optimization. double 0 Lower limit of parameter.
Parameters.param _minval6
SolverOptions.Optimization. double | 0 Upper limit of parameter.
Parameters.param__maxval6
SolverOptions.Optimization. string n Parameter name.
Parameters.param _name7
SolverOptions.Optimization. double 0 Lower limit of parameter.
Parameters.param minval7
SolverOptions.Optimization. double | 0 Upper limit of parameter.
Parameters.param _maxval7
SolverOptions.Optimization. string m Parameter name.
Parameters.param _name8
SolverOptions.Optimization. double 0 Lower limit of parameter.
Parameters.param minval8
SolverOptions.Optimization. double | 0 Upper limit of parameter.
Parameters.param _maxval8
SolverOptions.Optimization. string m Parameter name.
Parameters.param _name9
SolverOptions.Optimization. double | 0 Lower limit of parameter.
Parameters.param minval9
SolverOptions.Optimization. double | 0 Upper limit of parameter.
Parameters.param _maxval9
SolverOptions.Optimization. string n Parameter name.
Parameters.param _namel0
SolverOptions.Optimization. double | 0 Lower limit of parameter.
Parameters.param minvall0
SolverOptions.Optimization. double | 0 Upper limit of parameter.
Parameters.param maxvall0
SolverOptions.Optimization.Newton
SolverOptions.Optimization. bool 0 set to 1 if the ’surviving population size’ best
Newton. value(s) of shooting with ’initial population size’
random _starting values different parameter sets should be used as starting
values for Newton’s method
SolverOptions.Optimization. double 1e-006 Absolute value D for numerical computation of
Newton.param_ epsilon_abs dx=K*x + D (==>f"(x) = df/dx).
SolverOptions.Optimization. double | 0.0001 Relative value K for numerical computation of

dx=K*x + D (==>1"(x) = df/dx).

3.16. OPTIONS

449

SolverOptions.Optimization. integer | 5 Maximal number of newton iterations.

Newton.

max_number_ of iterations

SolverOptions.Optimization. double 1e-006 Absolute accuracy.

Newton.absolute accuracy

SolverOptions.Optimization. integer | O 0...no limit of optimized parameter values, 1...use

Newton.use param _limits param_ [min|max]val, 2...assume all parameters po-
sitive, -1...assume all parameters negative.

SolverOptions.Optimization. integer | 1 Shooting: number of initial parameter sets initial

Newton. evaluations of the cost function (randomly between

initial population _size range Parameters.minval and Parameters.maxval)

SolverOptions.Optimization. integer | 1 Number of starting parameter sets for Newton’s

Newton. method. This number defines how often Newton’s

surviving population _size method should be started.

SolverOptions.Optimization.Genetic

SolverOptions.Optimization. integer | 20 Size of initial trial values; also used for random

Genetic.initial population size Newton initialization.

SolverOptions.Optimization. integer | 10 Size of values which are further tracked; also used

Genetic. for random Newton initialization.

surviving population _size

SolverOptions.Optimization. integer | 10 Number of children of surviving population.

Genetic.number of children

SolverOptions.Optimization. integer | 15 Number of generations in genetic optimization.

Genetic.

number of generations

SolverOptions.Optimization. double | 0.5 Reduction of range of possible mutations.

Genetic.

range reduction factor

SolverOptions.Optimization. double | 0 Initialization of random function.

Genetic.

randomizer initialization

SolverOptions.Optimization. double | 0.5 Set to value greater than zero (distance is allowed

Genetic. radius of (hyper-)sphere in the normed parameter

min_ allowed _distance_ factor space (min=0)). Only the best parameter in the
inner of the (hyper-)sphere is furtile.

SolverOptions.Sensitivity

SolverOptions.Sensitivity. integer | 0 (0)1...(Don’t) analyze sensitivity of sensor values

activate with respect to parameters.

SolverOptions.Sensitivity. string "Forward" df/dx: Forward: use forward difference, Backward:

method use backward difference, Central: use central diffe-
rence.

SolverOptions.Sensitivity. double | 0.0001 Absolute value D for computation of df/dx,

num _diff parameter absolute dx=K*x+D.

SolverOptions.Sensitivity. double | 0.0001 Relative factor K for computation of df/dx,

num_diff parameter relative dx=K*x+D.

SolverOptions.Sensitivity. bool 0 (0)1...(Don’t) use final sensor values.

use final sensor values

SolverOptions.Sensitivity. bool 0 1/(0) ... (Don’t) get parameters from Optimiza-

use optimization parameters tion.Parameters.

SolverOptions.Sensitivity.Parameters

SolverOptions.Sensitivity. integer | O Number of parameters.

Parameters.

number_of params

SolverOptions.Sensitivity. string n Parameter name.

Parameters.param namel

SolverOptions.Sensitivity. string n Parameter name.

Parameters.param name2

450 CHAPTER 3. HOTINT REFERENCE MANUAL
SolverOptions.Sensitivity. string m Parameter name.
Parameters.param _name3
SolverOptions.Sensitivity. string n Parameter name.
Parameters.param _name4
SolverOptions.Sensitivity. string n Parameter name.
Parameters.param _nameb
SolverOptions.Sensitivity. string n Parameter name.
Parameters.param _name6
SolverOptions.Sensitivity. string m Parameter name.
Parameters.param _name7
SolverOptions.Sensitivity. string n Parameter name.
Parameters.param _name8
SolverOptions.Sensitivity. string m Parameter name.
Parameters.param _name9
SolverOptions.Sensitivity. string m Parameter name.

Parameters.param namel0

3.16.2 LoggingOptions

Data objects of LoggingOptions:

‘ Data name ‘ type default description

Solver

Solver.general _information bool 0 Print general solver information. This includes:
Newtons relative error goal, contractivity, iteration
error, and qualitative information about Jacobian-
updates, as well as iteration error and number of
newton iterations at each post newton step, and
post newton iterations at each time step.

Solver.new- bool 0 Print condition number of Jacobi matrix in New-

ton iteration jacobi condition tons method whenever it is updated.

Solver.new- bool 0 Print Jacobi matrix of Newtons method whenever

ton_iteration jacobi matrix it is updated.

Solver.new- bool 0 Print iterated residual vector at each Newton step.

ton_iteration residual vector

Solver.new- bool 0 Print iterated solution vector at each Newton step.

ton_iteration solution vector

Solver. bool 0 Print data vector at each nonlinear iteration step.

post _newton iteration data_vector

Solver. bool 0 Print solution increment of each step (dynamic si-

step _solution vector increment mulation: time step, static simulation: load step).

Solver.step _solution vector bool 0 Print solution vector of each step (dynamic simula-
tion: time step, static simulation: load step).

EDCParser

EDCParser. bool 0 Print general information on parsed objects (e.g.,

general _information while reading modeldata or configuration files).

output_ level integer | 6 0.n0 output; 1..necessary output (Errors, star-
t/end simulation); 2..almost necessary output
(Warnings); 3..multiple simulation output (parame-
ter variation/optimization); 4..simulation output
(solver); 5..extended output (useful information);
6..complete information; 7..debug level 1; 8..debug
level 2; 9..max output.

output_ precision double integer | 8 number of significant digits of a double in output

window and logfile.

3.16. OPTIONS

451

output_ precision_ vector integer | 6 number of significant digits of a vector in output
window and logfile.
output precision matrix integer | 10 number of significant digits of a matrix in output
window and logfile.
max_ error messages integer | 100 Number of displayed error messages.
max_warning messages integer | 100 Number of displayed warning messages.
computation output every x_sedouble | 2 Write computation output every x seconds; notice:
if solver logs are printed, then this option does not
take effect.
write_mass and _stiffness matiizbool 0 Write the initial mass and stiffness matrices in Mat-
lab format to files Mmat.dat and Kmat.dat, in Mat-
lab directory.
default log filename string "hotint.log" Default filename for hotint log file.
critical log file size double | 10 critical log file size, after which a warning is dis-
played; in megabytes.
file output_level integer | 7 0.n0 output; 1..necessary output (Errors, star-
t/end simulation); 2..almost mnecessary output
(Warnings); 3..multiple simulation output (parame-
ter variation/optimization); 4..simulation output
(solver); 5..extended output (useful information);
6..complete information; 7..debug level 1; 8..debug
level 2; 9..max output.
3.16.3 GeneralOptions
Data objects of GeneralOptions:
| Data name | type default | description
Application
Application. bool 0 1/(0) ... (Don’t) automatically close application af-
close application when finished ter computation.
Application. bool 1 1/(0) ... 1 .. show HOTINT window (minimized).
show hotint window
Application. bool 0 immediately start computation on program start
start _computation automatically
Application.slim _menu integer | O 0..full menu, otherwise several menu items removed.
Application.reload _last_model | bool 0 1/(0) ... (Don’t) reload the last saved model on
program start
Application.activate _autosave | bool 1 1/(0) ... (Don’t) save the model automatically be-
fore each change of an object
Application. bool 0 1/(0) (Don’t) capture final frame of
capture_final frame 3D-scene to file final frame.bmp in sensor
output directory, specified in ’GeneralOpti-
ons.Paths.sensor output_path’
Paths
Paths.application path string "D:\cppclean |3 2010\HotInt V1 clean\HotIntx64\Release\"
Path of the application.
Paths. string n Path of Hotint Input Data file.
hotint _input data_path
Paths.rela- bool 1 1. relative paths are relative to ho-
tive _paths relative to_application tint.exe(application path)| O..relative to hid-file
(hotint _input_data_path)
Paths.single image path string m Path to store single images (record frame dialog)
Paths.video image path string m Path to store video images series (recoed frame di-
alog)

452 CHAPTER 3. HOTINT REFERENCE MANUAL
Paths.plottool _image path string m Path to store plottool images (plottool dialog
Paths.sensor _output_path string ".\.\output\"
Relative or absolute path to output directory.

ModelFile

ModelFile. string n Name of Hotint Input Data file.

hotint _input_data_filename

ModelFile.inter- string "Generate

nal _model function name Tex Files For | Name of internal model function (cpp).

Docu"

ModelFile.recent filel string m Recent file filename 1.

ModelFile.recent file2 string " Recent file filename 2.

ModelFile.recent file3 string m Recent file filename 3.

ModelFile.recent file4 string " Recent file filename 4.

ModelFile.recent file5 string n Recent file filename 5.

ModelFile. bool 1 Enable this function to allow "ho-

accept _txt_file_as model file tint _input data_filename’ with ending ’.txt’
as first argument (for drag and drop).

Measurement

Measurement.use _degrees bool 1 1](0) ... (Don’t) use degrees instead of radiant in
edit dialogs for bodies and joints.

Measurement.angle mode integer | O Rotation input mode: 0=Euler angles, 1=Rotation
X/Y/Z, 2=Euler parameters.

Measurement.units of legend | integer | 0 Units of legend: 0=SI(m,N, etc.); 1=mm, N, etc.

OutputWindow

OutputWindow. integer | 50000 Maximum text length (number of characters) for

max_text length output text window, use -1 for no limit

SavedViewingOptions

SavedViewingOptions. string "saved ViewingOptionsl.txt"

filename 1 Filename (including absolute path if not equal to
application path) of saved viewing options acces-
sable via button '1’ in GUL (Use Ctrl+Click on this
button to store the viewing options)

SavedViewingOptions. string "savedViewingOptions2.txt"

filename 2 Filename (including absolute path if not equal to
application path) of saved viewing options acces-
sable via button "2’ in GUL (Use Ctrl+Click on this
button to store the viewing options)

SavedViewingOptions. string "savedViewingOptions3.txt"

filename 3 Filename (including absolute path if not equal to
application path) of saved viewing options acces-
sable via button '3’ in GUIL (Use Ctrl+Click on this
button to store the viewing options)

3.16.4 ViewingOptions

Data objects of ViewingOptions:

| Data name | type default | description
Animation
Animation. bool 1 1/(0) ... (Don’t) start animation from beginning.
animate from beginning
Animation. integer | 1 Animation frames: show every N’th frame at ani-
animate _every N _frame mation.

Animation. bool 0 1/(0) ... (Don’t) animate deformation scaling.
animate deformation

3.16. OPTIONS 453
Animation. bool 0 1 ... animate deformation (eigenmodes) only for
animate deformation once one cycle - for recording; 0 ... endless animate
Animation.RecordSingleFrames
Animation.RecordSingleFrames. | bool 0 1/(0) ... (Don’t) record frames
record
Animation.RecordSingleFrames. | bool 0 1/(0) ... (Don’t) show frame numbers in images);
show frame numbers
Animation.RecordSingleFrames. | integer | 1 record every x frames
record _every x_frame
Animation.RecordSingleFrames. | string "snapshot" name of the single frame file without extensions
single file name
Animation.RecordSingleFrames. | string "frame" name of the video frame file without extensions and
video file_name number
Animation.RecordSingleFrames. | integer | 0 format of the exported file (default setting for radi-
default image format obutton) 0..JPG, 1..PNG, 2. BMP
Animation.RecordSingleFrames. | bool 0 includes the output window to the screenshot
include output window
Animation.RecordSingleFrames. | bool 1 prevent multiple frames of the same time step (de-
max_one_ frame per timestep activate for saving e.g. eigenmodes)

Misc
Misc.redraw_frequency integer | 4 Redraw frequency: O..off, 1..draw last frame,
2..100sec, 3..20sec, 4..2sec, 5..200ms, 6..50ms,
7..20ms, 8..every 10 frames, 9..every frame.
Misc.global line thickness double | 1 Global line thickness (coord system, etc.) ****,
Misc.global _point_size double | 2 Global point size (coord system, grid, etc.) ****.
Misc.show 3D text in front | bool 1 1/(0) ... (Don’t) show 3D texts in front.
Misc.axes_ position integer | 0 position of axes: bottom left (0), bottom right (1),
top right (2), top left (3), center (4), no axes (5)
Misc.lock _rotation bool 0 lock rotation of model (for 2D models)
GeomkElements

| GeomElements.line _thickness | double | 2 | GeomElement (outline) line thickness ****.
Origin
Origin.show bool 1 1/(0) ... (Don’t) draw coordinate system in origin

(X0, YO, Z0).
Origin.size _of origin double | 0.5 Size of origin.
Grid
Grid.show integer | 0 Show Grid and Background planes (add up),
1-XY, 2-XZ, 4-YZ.
Grid.pos_x double | 0 X-position for interesction point of planes
Grid.pos_y double 0 Y-position for interesction point of planes
Grid.pos_z double 0 Z-position for interesction point of planes
Grid.size 1 double | 2 X-size of background plane
Grid.size 2 double | 2 Y-size of background plane
Grid.size 3 double | 2 Z-size of background plane
Grid.step 1 double | 0.1 Grid discretization X-direction
Grid.step 2 double | 0.1 Grid discretization Y-direction
Grid.step 3 double | 0.1 Grid discretization Z-direction
Grid.Colors
Grid.Colors. double | 0.1 Transparency factor for the backgruond planes
transparency factor
Grid.Colors.planel col r double | 0.85 Red color channel for XY plane
Grid.Colors.planel col g double | 0.85 Green color channel for XY plane
Grid.Colors.planel _col b double | 0.85 Blue color channel for XY plane
Grid.Colors.plane2 col r double | 0.95 Red color channel for XZ plane
Grid.Colors.plane2 col g double | 0.95 Green color channel for X7 plane
Grid.Colors.plane2 col b double | 0.95 Blue color channel for XZ plane
Grid.Colors.plane3 _col r double | 0.95 Red color channel for YZ plane

454 CHAPTER 3. HOTINT REFERENCE MANUAL
Grid.Colors.plane3 col g double | 0.95 Green color channel for YZ plane
Grid.Colors.plane3 _col b double | 0.95 Blue color channel for YZ plane
CuttingPlane
CuttingPlane.1
CuttingPlane.1l.activate bool 0 1/(0) ... Use (Don’t use) cutting plane.
CuttingPlane.l.normal X double 1 Cutting plane normal-X.

CuttingPlane.l.normal Y double | 0 Cutting plane normal-Y.

CuttingPlane.l.normal 7 double | O Cutting plane normal-Z.

CuttingPlane.1.distance double | 0 Cutting plane distance.

CuttingPlane.2

CuttingPlane.2.activate bool 0 1/(0) ... Use (Don’t use) cutting plane.

CuttingPlane.2.normal X double 1 Cutting plane 2 normal-X.

CuttingPlane.2.normal Y double | 0 Cutting plane 2 normal-Y.

CuttingPlane.2.normal Z double | O Cutting plane 2 normal-Z.

CuttingPlane.2.distance double | 0 Cutting plane 2 distance.

CuttingPlane.cut_ bodies bool 1 1/(0) ... (Don’t) cut bodies.

CuttingPlane. bool 1 1/(0) ... (Don’t) cut alternative shapes of bodies.

cut_bodies altshapes

CuttingPlane.cut_ ground bool 1 1/(0) ... (Don’t) cut background.

CuttingPlane. bool 0 1/(0) ... (Don’t) use OpenGL for handling cutting

cut_whole scene by open gl planes.

CuttingPlane.nosurfaceupdate bool 0 use of cutting plane does trigger a change of drawn
surfaceelements

StandardView

StandardView. integer | 1 Rotation axis for standard view angle 1 (rotation

angle rot_axis_1 axis 1, 2 or 3).

Standard View. integer | 2 Rotation axis for standard view angle 2 (rotation

angle rot_axis 2 axis 1, 2 or 3).

StandardView. integer | 3 Rotation axis for standard view angle 3 (rotation

angle rot axis 3 axis 1, 2 or 3).

StandardView.angle 1 double | O Standard view angle 1.

StandardView.angle 2 double | 0 Standard view angle 2.

StandardView.angle 3 double | 0 Standard view angle 3.

Bodies

Bodies.Rigid

Bodies.Rigid.show _outline bool 1 1/(0) ... (Don’t) show bodies outline.

Bodies.Rigid.show_ faces bool 1 1/(0) ... (Don’t) show bodies faces.

Bodies.Rigid.line thickness double | 1 Rigid body (outline) line thickness **** not used
yet.

Bodies.Rigid. bool 1 1/(0) ... (Don’t) draw center of gravity

draw _center of gravity

Bodies.Rigid.draw_resolution integer | 12 Draw resolution for Rigid3D.

Bodies.Rigid.COG _sizefactor double | 1 Cog_factor for Rigid3D (default: 1).

Bodies.show_ element _numbers | bool 0 1/(0) ... (Don’t) show element body numbers.

Bodies.show local frame bool 0 1/(0) ... (Don’t) show local body frame.

Bodies.transparent bool 1 1/(0) ... (Don’t) draw bodies transparent.

Bodies.local _frame _size double | O Body local frame size.

Bodies. double |1 Deformation scale factor.

deformation _scale factor

Bodies. integer | 0 1/(0) ... (Don’t) use deformation scale factor in ani-

scale rigid body displacements mation.

Bodies.show _velocity vector bool 0 1/(0) ... (Don’t) show velocity vector, e.g. for par-
ticles.

Bodies.velo- bool 0 1/(0) ... (Don’t) show velocity vector for particles

city _vector just for particles only.

Bodies. integer | 1 1: constant scaling (a), 2: linear scaling (ax), 3:

velocity vector scaling mode

exponential scaling (a(l-exp(-x/b))).

3.16. OPTIONS 455
Bodies. double | 1 magnification factor; e.g., if velo-
velocity vector scaling a city vector scaling mode == 2: velocity

vector length = v*velocity vector scaling a.
Bodies. double 1 knee factor; e.g., if velocity _vector _scaling mode
velocity vector scaling b == 3: velocity ~ vector length =
velocity _vector _scaling _a*(1-exp(-
v/velocity _vector scaling b)).
Bodies.velo- double 1 thickness scaling factor; independent from mode.
city vector scaling thickness
Bodies.Particles
Bodies.Particles. double 1 factor for scaling the displacements.
displacement scale factor
Bodies.Particles. double 1 factor for adjusting the size of particles while dra-
draw _size factor wing.
Bodies.Particles. integer | 1 draw every n-th particle only.
draw_every nth
FiniteElements
FiniteElements.Contour
FiniteElements.Contour. bool 1 1/(0) ... (Don’t) show solution in mesh as contour
activate plot.
FiniteElements.Contour. bool 0 1/(0) ... Max. stress is (not) updated during com-
max_ stress_active putation.
FiniteElements.Contour. double | O Value of max. stress.
max_ stress
FiniteElements.Contour. bool 0 1/(0) ... Min. stress is (not) updated during com-
min_stress_ active putation.
FiniteElements.Contour. double | 0 Value of min. stress.
min_stress
FiniteElements.Contour. string m Name of the field variable, which is currently se-
post__processing variable name lected for contour plotting.
FiniteElements.Contour. bool 0 1/(0) ... (Don’t) update the range of the variable
variable range auto_update each time a new scene is plotted.
FiniteElements.Contour. integer | 10 Color tiling (used for FE-color texture).
color tiling
FiniteElements.Contour. integer | 3 number of digits for the numbers in label.
label precision
FiniteElements.Contour. bool 0 1/(0) ... (Don’t) draw Stress/strain/etc. interpola-
plot _interpolated ted at nodes.
FiniteElements.Contour. bool 0 1/(0) ... (Don’t) draw grey colors for finite elements.
grey mode
FiniteElements.Contour. bool 0 1/(0) ... (Don’t) invert colors.
invert colors
FiniteElements.Contour. bool 0 1/(0) ... (Don’t) create nonlinear distributed color
nonlinear color legend legend.
FiniteElements.Contour. bool 0 1/(0) ... (Don’t) hide color legend.
hide legend
FiniteElements.Contour. integer | 16 Axis tiling (for element face and outline, beams and
axis_tiling plates).
FiniteElements.Contour. integer | 8 Axis resolution: contour plot resolution along axis,
resolution axis beams and plates.
FiniteElements.Contour. integer | 4 Cross-section resolution: contour plot resolution at
resolution cross_section cross-section, beams and plates.
FiniteElements.Contour. integer | 2 Contour plot resolution for solid finite elements.
resolution solid _elements
FiniteElements.Nodes
| FiniteElements.Nodes.show bool |1 1](0) ... (Don’t) draw nodes.

456 CHAPTER 3. HOTINT REFERENCE MANUAL

FiniteElements.Nodes. bool 0 1/(0) ... (Don’t) show node numbers.

show node numbers

FiniteElements.Nodes. integer | 3 Node resolution for drawing.

node _resolution

FiniteElements.Nodes. double | 0.001 Draw node size.

node_ size

FiniteElements.Nodes. bool 0 1/(0) ... (Don’t) draw vector in direction of velocity.

show _velocity vector

FiniteElements.Mesh

FiniteElements.Mesh.show bool 1 1{(0) ... (Don’t) show mesh of finite element.

FiniteElements.Mesh. bool 0 1/(0) ... (Don’t) draw Plate elements flat, only mid-

draw_flat _elements plane (view from top only).

FiniteElements.Mesh. bool 1 1/(0) ... (Don’t) draw surface elements only.

draw _only surface elements

FiniteElements.Mesh. double | 1 Finite element line thickness (outline of 2D and 3D

element line thickness beam, plate).

FiniteElements.Mesh. double | 1 Shrinking factor.

shrinking factor

Connectors

Connectors.show constraints bool 1 1{(0) ... (Don’t) show joints/connectors.

Connectors. bool 0 1/(0) ... (Don’t) draw control elements in 3D Win-

show control elements dow

Connectors. bool 0 1/(0) ... (Don’t) show constraint number.

show constraint numbers

Connectors.show _ faces bool 1 1/(0) ... (Don’t) show constraint faces —> show con-
straint faces.

Connectors.transparent bool 1 1/(0) ... (Don’t) draw constraints transparent.

Connectors.draw_outline bool 0 1](0) ... (Don’t) draw constraints outline **** —>
faces is IOption 114.not used yet.

Connectors.line_ thickness double | 1 Constraint (outline) line thickness ****not used
yet.

Connectors.Contact

Connectors.Contact. bool 1 1/(0) ... (Don’t) draw circles at contact of bodies.

show contact as_circle

Connectors.Contact. bool 1 1/(0) ... (Don’t) show contact points.

show contact points

Connectors. double | 0.1 global scalar constraint draw size (e.g.radius)

global draw_scalar size

Connectors. double 16 global constraint draw resolution

global draw _resolution

Connectors.Autosize bool 0 1|(0) Autogenerate a global scalar constraint draw
size

Loads

Loads.show loads bool 0 1/(0) ... (Don’t) show loads.

Loads.arrow _size double | 0.1 Size of arrow for drawing of loads.

Loads.color red double | 0.6 Red-value for drawing of loads (use values between
0. and 1.).

Loads.color _green double | 0.6 Green-value for drawing of loads (use values bet-
ween 0. and 1.).

Loads.color blue double | 0 Blue-value for drawing of loads (use values between
0. and 1.).

Sensors

Sensors.show_ sensors bool 0 1/(0) ... (Don’t) show sensors.

Sensors.transparent bool 1 1/(0) ... (Don’t) draw sensors transparent.

Sensors.sensor _origin _size double | 0.2 Sensor origin size.

OpenGL

| OpenGL.enable_lighting | bool | 1 | OpenGL lighting.

3.16. OPTIONS

457

OpenGL.smooth _model bool 1 OpenGL SMOOTH ShadeModel smooth.

OpenGL. bool 1 Immediate apply in openGL dialog.

immediate apply dialog

OpenGL.global culling integer | O OpenGL cull (means: exclude) 1=front 2=back or
3=both views on faces of polygons; 0=don’t cull
any view.

OpenGL.global _transparency double | 0.8 Global transparency for SetColor, 1=no translu-
cency, 0=fully transparent.

OpenGL.material _shininess double | 60 Material shininess (0..128).

OpenGL. double | 1 Material specular color intensity.

material color intensity

OpenGL.Light1

OpenGL.Light1.enable bool 1 OpenGL enable light1.

OpenGL.Light1. bool 0 OpenGL light1 mode (0=standard, 1=use light po-

use_light position sition).

OpenGL.Light1l.ambient double | 0.25 Light1 ambient parameter.

OpenGL.Light1.diffuse double | 0.4 Light1 diffuse parameter.

OpenGL.Light1.specular double 04 Light1 specular parameter.

OpenGL.Lightl.pos_x double 1 Light1 posx.

OpenGL.Lightl.pos_y double 1 Light1 posy.

OpenGL.Lightl.pos_z double | -1 Light1 posz.

OpenGL.Light2

OpenGL.Light2.enable bool 1 OpenGL enable light2.

OpenGL.Light2. bool 0 OpenGL light2 mode (0=standard, 1=use light po-

use_light position sition).

OpenGL.Light2.ambient double | 0.25 Light2 ambient parameter.

OpenGL.Light2.diffuse double | 0.4 Light2 diffuse parameter.

OpenGL.Light2.specular double 0 Light2 specular parameter.

OpenGL.Light2.pos_x double | 0 Light2 posx.

OpenGL.Light2.pos_y double | 3 Light2 posy.

OpenGL.Light2.pos_z double 2 Light2 posz.

ApplicationWindow

ApplicationWindow.rect _left integer | 250 left coordinate of application window

ApplicationWindow.rect _top integer | 50 top coordinate of application window

ApplicationWindow.rect _width | integer | 700 width of application window

ApplicationWindow. integer | 700 left coordinate of application window

rect _height

DataManager

DataManager.dialog open bool 1 open data manager on startup

DataManager. bool 0 if checked, then solution data (for data manager)

store__data_to_files is stored in files, instead of memory; these files are
located in subdirectory solution data of ’Genera-
10ptions.Paths.sensor _output_path’.

DataManager. double | 0.01 Store data with data-manager, redraw and create

store data_every animations: # -4 == once at endtime, -2 == al-
ways, -1 == at max stepsize, 0 = never, x.x = at
every time x.x.

DataManager.special _output integer | O Store a single special output file, available: ’1’ I-
DEAS Format: stresses at element nodes, 2’ VTK
Format, '3’ I-DEAS and VTK format

OutputWindow

OutputWindow.dialog open bool 1 open output dialog on startup

OutputWindow.stored width integer | 200 stored width of output dialog

OutputWindow. bool 1 enable output text in output dialog

enable output text

View3D

View3D.Center point

458 CHAPTER 3. HOTINT REFERENCE MANUAL
View3D.Center _point.xpos double 0 Centerpoint x-position
View3D.Center point.ypos double | 0 Centerpoint y-position
View3D.Center offset
View3D.Center _offset.xpos double | O Centeroffset x-position
View3D.Center _offset.ypos double | 0 Centeroffset, y-position
View3D.Center _offset.zpos double | O Centeroffset z-position
View3D.scene offset double | 1.5 Scene offset
View3D.zoom factor double | 2.8 zoom factor of 3D view
View3D.aspect ratio double 1 current aspect ratio in OpenGL view
View3D. double 1 stored maximum scene coordinates in OpenGL view
maximum _scene_coordinates
View3D.Mouse
View3D.Mouse. double | 0.005 increment of zoom factor per mousemove of 3D view
zoom _factor _mouse_inc on mousemove
View3D.Mouse. double 0.01 increment of translation per mousemove of 3D view
translation _mouse _inc on mousemove
View3D.Mouse. double 0.5 increment of rotation per mousemove of 3D view on
rotation mouse_inc mousemove
View3D.Mouse. double 0.01 increment of perspective per mousemove of 3D view
perspective _mouse_inc on mousemove
View3D.ModelViewMatrix
View3D.Model ViewMatrix.all double 1 rotation parameter in open GL model view matrix
View3D.ModelViewMatrix.al2 double 0 rotation parameter in open GL model view matrix
View3D.Model ViewMatrix.al3 double 0 rotation parameter in open GL model view matrix
View3D.ModelViewMatrix.a21 double 0 rotation parameter in open GL model view matrix
View3D.ModelViewMatrix.a22 | double 1 rotation parameter in open GL model view matrix
View3D.ModelViewMatrix.a23 double 0 rotation parameter in open GL model view matrix
View3D.Model ViewMatrix.a31 double | 0 rotation parameter in open GL model view matrix
View3D.ModelViewMatrix.a32 double 0 rotation parameter in open GL model view matrix
View3D.ModelViewMatrix.a33 | double | -1 rotation parameter in open GL model view matrix
View3D.ModelViewMatrix.tx double 0 translation parameter in open GL model view ma-
trix
View3D.ModelViewMatrix.ty double 0 translation parameter in open GL model view ma-
trix
View3D.Model ViewMatrix.tz double | 0 translation parameter in open GL model view ma-
trix
3.16.5 PlotToolOptions
Data objects of PlotToolOptions:
] Data name \ type \ default \ description
auto_redraw bool 0 1/(0) .. (Don’t) redraw in regular intervals
auto redraw interval double | 30 redraw every x seconds
auto_rescale bool 1 1/(0) .. (Don’t) rescale to fully fit the whole data
when updated
title size factor double | 1.25 factor to in-/decrease font size of title in respect to
axis font
ticks size factor double | 0.7 factor to in-/decrease font size of ticks in respect to
axis font
line thickness border integer | 4 line thickness (border) in logical points
line thickness factor double |1 scaling factor for all plotted lines
status_ bar_info bool 0 1/(0) .. (Don’t) show status bar information.
open_automatically bool 0 1/(0) .. (Don’t) open PlotTool when HOTINT

opens

3.16. OPTIONS

459

layout _file string m layout file that is loaded when PlotTool is automa-
tically loaded

DataPoints

DataPoints. bool 0 1/(0) .. (Don’t) skip several datapoints in draw rou-

flag_draw _every nth tine)

DataPoints.draw__every nth integer | 100 draw every nth datapoint (0 for every)

DataPoints. bool 0 1/(0) .. (Don’t) skip marking of several datapoints

flag_mark every nth in draw routine)

DataPoints.mark every nth integer | 100 mark every nth datapoint (0 for every)

DataPoints.vertical marker bool 0 1/(0) .. (Don’t)mark current time in plot with a
special marker

DataPoints. bool 0 1/(0) .. (Don’t) draw the data only up to the time

draw _only to time from datamanager

DataPoints.use_time_interval | bool 0 1/(0) .. (Don’t) use t_min and t_max as bounda-
ries for drawing in plottool

DataPoints.t _min double 0 Lower boundary for time interval plot. Only used
if use_time _interval = 1.

DataPoints.t _max double 0 Upper boundary for time interval plot. Only used
if use_time interval — 1.

View

View.initial size horizontal integer | 640 initial size of the CView holding the plot

View.initial size vertical integer | 480 initial size of the CView holding the plot

View.plot horizontal integer | 3000 size in logical units for the plot - fixed aspect ratio

View.plot_vertical integer | 2000 size in logical units for the plot - fixed aspect ratio

View.distance _left double 15 surplus in %plotwidth from left border of the plot
to left border of the window

View.distance _top double 15 surplus in %plotheight from upper border of the
plot to the upper border of the window

View.distance bottom double | 20 surplus in %plotheight from lower border of the plot
to the lower border of the window

View.distance right double 15 surplus in %plotheight from lower border of the plot
to the lower border of the window

Watches

Watches.initial _size horizontal | integer | 300 initial size of the CView holding the plot

Watches.initial size vertical integer | 200 initial size of the CView holding the plot

Axis

Axis.draw_at_origin bool 0 1/(0) .. (Don’t) draw axis at origin

Axis.label _major bool 1 1{(0) .. (Don’t) write lables for major ticks

Axis.]abel _minor bool 1 1/(0) .. (Don’t) write lables for minor ticks

Axis.overdraw double | 3 percentage the axis are longer than the graph

Axis.ticksize double 2 size in percent of major ticks, minor are half size

Axis.minor ticks x integer | O minor ticks for x-axis

Axis.minor ticks y integer | O minor ticks for y-axis

Axis.digits _x_labels integer | 3 maximum digits for x-axis labels

Axis.digits y labels integer | 3 maximum digits for y-axis labels

Grid

Grid.shading double | 0.5 Linecolor of grid lines: black if 0, white if 1, and
grey scales in between

Grid.linetype _major _x integer | 2 Linetype for major gridlines, x axis (0 = no line, 1
= solid, 2 = dash, 3 = dot)

Grid.linetype minor_x integer | 3 Linetype for minor gridlines, x axis (0 = no line, 1
= solid, 2 = dash, 3 = dot)

Grid.linetype major y integer 2 Linetype for major gridlines, y axis (0 = no line, 1
= solid, 2 = dash, 3 = dot)

Grid.linetype _minor_y integer | 3 Linetype for minor gridlines, y axis (0 = no line, 1

= solid, 2 = dash, 3 = dot)

Legend

460

CHAPTER 3. HOTINT REFERENCE MANUAL

Legend.show bool 0 1/(0) .. (Don’t) draw axis at origin
Legend.left double | 75 position in % of the legend’s left border
Legend.right double 100 position in % of the legend’s right border
Legend.top double 100 position in % of the legend’s upper border
Legend.bottom double 75 position in % of the legend’s lower border
SavePicture

SavePicture.filename string "snap" filename for the picture without extensions
SavePicture.size _horizontal integer | 1600 size in pixels of the saved BMP
SavePicture.size vertical integer | 1200 size in pixels of the saved BMP
SavePicture.jpg_quality integer | 10 quality setting for the JPG encoder
SavePicture.store_jpg bool 1 1/(0) .. (Don’t) store image as jpg
SavePicture.store_ png bool 0 1/(0) .. (Don’t) store image as png
SavePicture.store_bmp bool 0 1/(0) .. (Don’t) store image as bmp
SavePicture.store_emf bool 1 1/(0) .. (Don’t) store image as emf

Bibliography

[1] K. E. Brenan, S. L. Campbell, and L. R. Petzold. Numerical Solution of Initial-Value Prob-
lems in Differential-Algebraic Equations. SIAM, Philadelphia, 1996.

[2] E. Eich-Soellner, C. Fithrer, Numerical Methods in Multibody Dynamics, Teubner, Stuttgart,
1998.

[3] J. Gerstmayr, M. Stangl, High-Order Implicit Runge-Kutta Methods for Discontinuous Mul-
tibody Systems, Proceedings of the APM 2004, St. Petersburg, Russia, submitted.

[4] J. Gerstmayr, J. Schéberl, An Implicit Runge-Kutta Based Solver for 3-Dimensional Mul-
tibody Systems, PAMM, Volume 3(1), 2003, pp. 154-155.

[5] E. Hairer and G. Wanner, Stiff differential equations solved by Radau methods or the
RADAUS5-code, available via WWW at ftp://ftp.unige.ch/pub/doc/math/stiff/radaub.f
(1996)

|6] E. Hairer, (Norsett) and G. Wanner, Solving ordinary differential equations I (II), Springer
Verlag Berlin Heidelberg, 1991.

|7| E. Hairer and Ch. Lubich, and M. Roche, The numerical solution of differential-algebraic
systems by Runge-Kutta methods, Lecture Notes in Math. 1409, Springer—Verlag, (1989).

|8] A. Shabana Dynamics of Multibody Systems, Third Edition, Cambridge University Press,
2005.

[9] R. R. Craig Jr. and M. C. C. Bampton, Coupling of substructures for dynamic analyses,
AIAA Journal, 6(7), pp. 131301319, 1968

[10] J. Gerstmayr and A. Pechstein, A generalized component mode synthesis approach for
multibody system dynamics leading to constant mass and stiffness matrices, Proceedings of
the ASME 2011 International Design Engineering Technical Conferences & Computers and
Information in Engineering Conference IDETC/CIE 2011, Washington, DC, USA, 2011.
Paper No. DETC2011/MSNDC-47826, submitted.

[11] Masarati, P, Direct eigenanalysis of constrained system dynamics, Proceedings of the
Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2009.

[12] R. Ludwig and J. Gerstmayr, Automatic Parameter Identification for Generic Robot Mo-
dels, Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body
Dynamics, 2011.

[13] H. Bremer, Elastic Multibody Dynamics, Springer, 2008

[14] Denavit, Jacques; Hartenberg, Richard Scheunemann (1955). A kinematic notation for
lower-pair mechanisms based on matrices. Trans ASME J. Appl. Mech 23: 215U221.

461

462 BIBLIOGRAPHY

[15] K. Nachbagauer, P. Gruber, J. Gerstmayr. Structural and Continuum Mechanics Ap-
proaches for a 3D Shear Deformable ANCF Beam Finite Element: Application to static
and linearized dynamic examples. Journal for Computational and Nonlinear Dynamics, 8,
021004, DOI:10.1115/1.4006787, 2012.

[16] K. Nachbagauer. Development of shear and cross section deformable beam finite elements
applied to large deformation and dynamics problems, Johannes Kepler University Linz,
2012.

[17] K. Nachbagauer, P. Gruber, Yu. Vetyukov, J. Gerstmayr. A spatial thin beam finite ele-
ment based on the absolute nodal coordinate formulation without singularities. Proceedings
of the ASME 2011 International Design Engineering Technical Conferences, Computers and
Information in Engineering Conference IDETC/CIE 2011, Paper No. DETC2011/MSNDC-
47732, Washington, DC, USA, 2011.

[18] P. Gruber, K. Nachbagauer, Yu. Vetyukov, J. Gerstmayr. A novel director-based
Bernoulli-Euler beam finite element in absolute nodal coordinate formulation free of ge-
ometric singularities. Mechanical Science, 2013 (to appear).

[19] R. Schneiders, Algorithms for Quadrilateral and Hexahedral Mesh Generation,
www.robertschneiders.de /papers/vki.pdf - Proceedings of the VKI Lecture Series on Com-
putational Fluid Dynamics , 2000.

[20] D. Schramm, M. Hiller and R. Bardini, Vehicle Dynamics: Modeling and Simulation,
Springer, 2014.

	General Information
	HOTINT User Manual
	Multibody formulation
	Solution vector
	Main structure of the multibody kernel
	Object library
	The dynamic solver – implicit time integration
	The static solver – incremental loading
	Eigenmode computation
	Parameter Variation, Sensitivity Analysis, Identification and Optimization
	The Element Concept
	Nodes for Direct Connection of Finite Elements
	The Concept of Loads
	Sensors for Measuring
	Geometric Elements for Bodies with Complex Geometry

	Getting started
	Instructions for installing HOTINT on a MS-Windows computer
	First steps
	Command Line Usage
	Configure Notepad++ for HOTINT

	HOTINT Windows User Interface
	Using the graphics window
	Mouse control
	HOTINT main application window
	Specific buttons
	HOTINT Main Menu

	Creating your model in HOTINT
	Introduction
	Model setup via the script language
	Model setup via the graphical user interface

	Options Dialogs
	Introduction
	Hotint Options
	Viewing Options
	OpenGL Drawing Options
	Finite Element Drawing Options
	Body / Joint Options
	Data Manager
	Solver Options

	Data visualization and graphics export
	Visualization Tool
	How to record a video

	HOTINT File and Folder Structure
	Input Files
	Folder Structure

	HOTINT Reference Manual
	Preface
	Examples
	Data objects
	Observable FieldVariables
	Observable special values
	Controllable special values

	Element
	Mass1D
	Rotor1D
	Mass2D
	Rigid2D
	Mass3D
	NodalDiskMass3D
	Rigid3D
	Rigid3DKardan
	Rigid3DMinCoord
	LinearBeam3D
	RotorBeamXAxis
	ANCFBeamShear3DLinear
	ANCFBeamShear3DQuadratic
	ANCFBeam3DTorsion
	Hexahedral
	Tetrahedral
	Prism
	Pyramid

	Connector
	PointJoint
	CoordinateConstraint
	VelocityCoordinateConstraint
	MultiCoordConstraint
	SlidingPointJoint
	SlidingPrismaticJoint
	Rope3D
	FrictionConstraint
	Contact1D
	PlaneConstraint
	GenericBodyJoint
	RevoluteJoint
	PrismaticJoint
	UniversalJoint
	RigidJoint
	CylindricalJoint
	SpringDamperActuator
	RigidLink
	RotatorySpringDamperActuator
	SpringDamperActuator2D
	PointJoint2D

	Control elements
	IODiscreteTransferFunction
	IODigitalFilter
	IORandomSource
	IOLinearTransformation
	IOQuantizer
	IOContinuousTransferFunction
	IOLinearODE
	IOMathFunction
	IOSaturate
	IODeadZone
	IOProduct
	IOTime
	IOPulseGenerator
	IOTimeWindow
	IOStopComputation
	IOElementDataModifier
	IODisplay
	IOGraph3D
	IOMinMax
	IOTCPIPBlock
	IOX2C
	IOLinearTransducer

	Material
	Material
	MaterialThermalExpansion
	MaterialElastoplastic
	MaterialElastoplasticThermalExpansion

	BeamProperties
	Beam3DProperties

	Node
	Node3D
	Node3DS1rot1
	Node3DS2S3
	Node3DRxyz
	Node3DR123
	Node3DS1S2

	Load
	GCLoad
	BodyLoad
	ForceVector2D
	ForceVector3D
	MomentVector3D
	Gravity
	SurfacePressure
	BodyLoadSpatial

	Sensor
	FVElementSensor
	ElementSensor
	LoadSensor
	MultipleSensor
	SystemSensor
	FVGlobalPositionSensor

	SensorProcessors
	GeomElement
	GeomMesh3D
	GeomCylinder3D
	GeomSphere3D
	GeomCube3D
	GeomOrthoCube3D

	Set
	ElementSet
	GlobalNodeSet
	LocalNodeSetA
	LocalNodeSetB
	GlobalCoordSet
	LocalCoordSetA
	LocalCoordSetB
	FaceSetA
	SensorSet

	Mesh
	StructuralMesh
	SolidMesh

	MeshComponents
	Primitive: Block
	Primitive: Cylinder
	Primitive: Quadrilateral
	Primitive: Curve
	Extended: Mirror
	Extended: Extrude
	Extended: Rotational
	Extended: Lin2Quad
	Extended: SplitHexes
	Extended: Refine
	Process: Transform
	Process: Distort
	Process: Modify
	Process: WriterNeutral3D
	Loader: NetGen2D
	Loader: NetGen3D
	Loader: Neutral3D
	Loader: STL
	Loader: DataArrays
	Refinement
	MeshElements

	Command
	AddElement
	AddGeomElement
	AssignGeomElementToElement
	AddConnector
	AddLoad
	AddSensor
	AddSensorProcessor
	AddMaterial
	AddBeamProperties
	AddNode
	Include
	Print
	PrintIf
	ReadSTLFile
	RotMat2Angles
	LoadVectorFromFile
	TransformPoints
	ComputeInertia
	Sum
	Product
	Transpose
	CrossProduct
	for
	if
	GenerateNewMesh
	GenerateBeam
	GeneratePlate
	GenerateBlock
	GenerateCylinder
	LoadMesh
	WriteMesh
	Transform
	Distort
	Modify
	Linear2Quadratic
	SplitHexes
	Refine
	Rotate
	Mirror
	Extrude
	AddMeshToMBS
	GetNodesInBox
	GetNodesInCylinder
	GetNodesInSphere
	GetNodesInFunction
	GetNodePos
	GetFacesFromNodes
	GlueMesh
	GetLocalPosOfGlobalPos
	GetElementsInBox
	GetElementAtPosition
	GenerateNewPlot
	ExportToFile
	Close
	DoesEntryExist
	GetByName
	SetByName
	Compare
	StrCat
	Zeros
	IntArrayOp
	Timer
	AddSet
	AccessSet
	GenerateConstraints
	GenerateSensors
	AssignMaterial
	AssignLoad
	ChangeProperties
	SetInitialCondition
	OpenCompiledModel

	Options
	SolverOptions
	LoggingOptions
	GeneralOptions
	ViewingOptions
	PlotToolOptions

	Bibliography

